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Abstract

Optimal Prediction, Alarm, and Control

in Buildings Using Thermal Sensation Complaints

by

Rodney Alexander Martin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David M. Auslander, Chair

The management and automation of commercial building HVAC (Heating, Ventilation and Air-

Conditioning) systems is illustrative of a business that can benefit from the insightful use of all avail-

able information sources. Modern HVAC systems using direct digital control can potentially provide

useful performance data. Building occupant feedback complaint statistics are an untapped resource,

and can be cultivated from modern maintenance management databases. This thesis will address

the integration and application of these fundamental sources of information, using some modern and

novel techniques. The cost and scalability of these techniques can be positively influenced by recent

technological advances in computing power, sensors, and databases. However, application of the the-

ory that drives some of the newer techniques is still in its infancy, and requires tremendous computing

power. As such, an important theme in the thesis is to address computational efficiency and practical

usefulness of the techniques, via some clever approximations. One desired outcome is to make these

new techniques more accessible to users of existing building control technology. It is hoped that these

users and facility managers as well can benefit from the algorithmic and design-oriented paradigm



2

in which the results are presented.

Professor David M. Auslander
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Preliminaries

Energy savings and thermal comfort are important to both facility managers and building

occupants. As a result, they often are open to new and innovative ways to improve or even replace

currently existing practical methods that might not be taking advantage of the most recent advances

in technology. On one hand, in large commercial buildings modern DDC (Direct Digital Control)

systems are becoming more ubiquitous, with the use of sophisticated hardware that networks HVAC

components together and can be monitored remotely from a central location. The general trend

in the design and commissioning of new commercial buildings includes these new types of systems.

However, there still exists a large contingent of older buildings that still use pneumatic HVAC

systems. Many facility managers are charged with the operation of not only a hybrid mix of older

pneumatic building controls and modern DDC, but different building types and systems as well.

There are also certain nuances that need to be handled properly, such as the geographical climate,

weather, seasonal patterns’ influence on management of HVAC system operation, perimeter vs. core

zones, as well as building occupancy trends due to varied shifts and operating schedules. Due to the

deregulation of energy markets both domestically and abroad, the cost of energy and pricing/rate
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structures is another variable within the vast array of issues in a complicated operation that all

building managers and their technicians must contend with.

There are several different business processes as well as physical operating systems that

exist in facility management which are often mapped onto supervisory management information

systems. Hence there is often a repository of stove-piped information sources that are not necessarily

linked and used as inter-dependently as they should, and when they are it is more often on an ad-

hoc/heuristic basis. As a result, the opportunity for widespread potential cost savings may be lost

due to lack of knowledge or research concerning the intelligent use of these information-rich sources.

The most recent technological advances in computing must also be taken advantage of to achieve

the desired objectives of reduced energy usage and improved building occupant thermal comfort. To

address this, the primary goal of the next two chapters is to do the following:

• Describe the thesis objectives, specifically aimed closing the gap between current practice

methodology and current research efforts.

• Illustrate some of the current issues in commercial building operations, and how they are

practically dealt with in industry today.

• Discuss some of the current research efforts attempting to improve and/or optimize the status

quo of building operations as it pertains to commercial building HVAC systems.

1.2 Thesis Objective

It is important from a practical standpoint that the solutions to the problems cited are not

solely dependent on theoretical first–principles based models, but enhanced with actual measured

data from the plant and building occupants as well. Building occupants can be used as sensors in

a “feedback loop” of sorts, in conjunction with measured data from the plant. An example of such

a plant is shown in Fig. 1.1, enclosed within the dotted line labelled continuous–time “inner-loop.”

This represents a typical closed-loop control system, complete with disturbances due to weather and



3

internal loads, sensor lag at the thermostat measurement points, and a standard PI (Proportional-

Integral) controller to regulate the zone temperature to a desired reference value, r.

Building occupant feedback is represented by the outer loop, which involves the devel-

opment of both a complaint model and a thermostat setting control policy to achieve the desired

objectives. At the center of Fig. 1.1 is the building plant itself, whose parameters are typically

derived from a theoretical first–principles based model. However, as an alternative to this, a model

that is completely based upon the aggregate statistics of measured building temperature data (via

datalogger or DDC system) can be used, but it should be sufficient to characterize the fundamental

system dynamics. They should allow for the same objectives to be achieved, nearly as optimally as

a theoretical model would be able to. This allows for reduced complexity in the design and analysis

stage, primarily when developing the complaint model and optimal alarm system, which will be

discussed at length in subsequent chapters.
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It is necessary to obtain the statistics of measured complaint data, and the building plant

in order to develop a baseline complaint model [19, 22]. These statistics, if updated in a real–

time setting, would allow the predicted complaint model to achieve an adaptive on–line, real–time

functionality. However, research indicates [46, 47, 21] that the complaint rates are often low, and the

occupant feedback so sporadic that updating a complaint model adaptively may not have sufficient

“persistence of excitation” required for model validity. In this case, where there is a lack of existing

information to update the model, an off–line approach may be more suitable. However, there

are other collateral ramifications of using occupant feedback, since building occupants cannot be

modelled as perfect sensors. Occupants can learn to adjust their complaint behavior for a variety

of psychological and sociological reasons. Hence we can only assume that measured data is based

on normal behavior and any results of statistical information due to pathological behavior will have

to be interpreted on an individual basis. Furthermore, we assume that the HVAC building systems

are operating normally. This means that there are no faults in the system that might be the root

cause of building occupant complaints. Typical faults would be leaky valves and components, HVAC

equipment malfunction or failure, and miscalibrated sensors. Complaints are assumed to be solely

due to building occupant disagreement with the standing facility operating policy, or the more

probable case of poor control performance of any local zone controllers.

Given a model as described above with all of the stated assumptions in place, we must

keep in mind the primary goal of any facility manager, which is to keep energy costs reasonable

without sacrificing building occupant comfort. In fact, it may be useful for them to balance the

existing energy budget against anticipated comfort levels. These comfort levels are clearly related

to thermal sensation complaints, or events. In many engineering systems, the ability to predict, and

give an accurate alarm prior to impending critical events is of great importance. These critical events

may have varying degrees of severity, and in fact they may occur during normal system operation.

An alarm may be given for any number of thermal sensation complaint events that occur over a

specified time period. As such, an optimal alarm system can be designed to warn facility managers
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of impending complaints that might occur within a specified time period, to aid them in making

critical decisions about building operations. In this thesis, optimal alarm systems will be covered in

detail in Chap. 3, and the results of simulated alarm systems will be presented as well, in Chap. 7.

Level-crossing formulae are used extensively in optimal alarm and control design in this

thesis. New approximations that establish useful relationships between discrete-time optimal control

and alarm theory and continuous time-level crossing formulae will be presented in Chap. 4. Such

approximations may not have been considered in the past because there currently exist discrete-time

level-crossing formula that provide exact results. However, in specific cases using these formulae are

computationally burdensome and therefore not very practical. This is true especially for the imple-

mentation of real-time optimal control algorithms, such as one that might be used for a thermostat

setting control policy shown in Fig. 1.1. Some very straightforward approximations can provide an

alternative to the exact discrete-time level crossing formulae that are computationally much more

favorable. All approximations introduced are best for systems that have an autocorrelation close to

1. This can be interpreted as any system/process that has a high data sampling rate, or a small

sampling interval.

For the facility manager that desires more control over their responses to operation of the

building HVAC system, alarm systems with no automated subsequent control action may allow this

with complete flexibility. However, for those that wish to relinquish the management of these objec-

tives to an autonomous agent, an optimal “alarm-based control” and complaint-response algorithm

can also satisfy this requirement, and is presented in Chaps. 6 and 7. The objective function is one

that penalizes the actual monetary cost of energy conditioned on complaints or alarms. An optimal

control law traditionally provides a control signal directly to the plant. However, the defacto stan-

dard for today’s HVAC controls are PI controllers, and hence optimal control laws aren’t practically

implemented as a general rule. Alternatively, a setpoint generation scheme for a thermostat setting

strategy might be proposed as the method by which the optimal control objectives are achieved.

Developing automated thermostat setting strategies is only one possible way to achieve the desired
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objectives, which may not necessarily be applicable for all buildings, operational modes, and HVAC

system types. There may be other setpoints such as VAV (Variable-Air Volume) flow controllers,

chiller setpoints, etc., for which similar optimal strategies may be derived. Although it’s best to keep

the optimization as general as possible so that the methods are applicable across a broad scope of

setpoint strategies, the primary example in this thesis will be for a zone thermostat setting strategy.
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Chapter 2

Background

2.1 Current Industrial Practice

In order to better understand the evolution of modern industrial techniques in commercial

building operations, the following section provides a background outlining the framework around

which future developments in mitigation of costs due to energy usage and improvements in thermal

comfort are to be measured by.

2.1.1 Historical Treatment

Historically, there have been advances made in how to treat the issues of energy and

thermal comfort from a fundamental and operational standpoint, independent of recent technological

advances. The concepts and ideas that set a baseline for how the HVAC/facility management

industry perceives these issues will be covered in this section.

Energy

It’s always been important for facility managers to effectively manage and track their energy

costs, which come in large part due to high consumption of electricity by commercial building HVAC
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systems. In doing so, they must keep in mind some fundamental tenets of energy conservation. Some

of the more important ones as stated in the California Energy Commission’s (CEC) publication [39]

pertaining to energy efficiency project management include the following :

• Tracking energy usage and expenditures incurred.

• Looking for “energy traps” and providing recommendations for investing in alternatives or

alterations.

• Watching the energy budget and forecasting future costs.

• Looking for alternatives to traditional rate structures and energy prices in a volatile electricity

market.

Concerning this last item, as a result of the deregulation of utilities in several U.S states,

it is paramount to facility managers to take advantage of the potential for lower energy rates as well

as different rate structures. It’s also important for them to completely understand their utility bill

charges. According to the CEC [39], typically, electricity bills consist of many different components.

There is usually a fixed service charge, in addition to a per kW-h (kilowatt-hour) rate charge for

the amount of energy consumed for the billing period. There is also a demand charge based on the

peak electricity usage averaged over a short time period per billing period. For larger commercial

buildings with energy consuming HVAC equipment, reactive power is also charged for increased

electric transmission capacity, required for large inductive loads.

With the advent of deregulation, some other rate schedules becoming available are the time-

of-use rate and real-time pricing. The time-of-use rate is one in which the demand charge and rate

charge pricing varies depending on the time the electricity is consumed, typically according to season

and/or time of day. With real-time pricing, customers will pay for electricity via demand and rate

charges, at the exact same wholesale price as the utility pays for it. Customers may be able to obtain

real-time price of utility information hours in advance of them going into effect, thereby allowing
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them to anticipate higher rates and acting accordingly to reduce energy costs. This, however, will

require more sophisticated hardware and software than may currently exist and are available to

many facility managers. Computerization of energy usage and price tracking may become necessary

to be on par with a real-time pricing rated schedule, as well as control of equipment with a DDC

system and being aware of typical electricity demand on a real-time basis.

Thermal Comfort

Historically, there have been many studies pertaining to thermal comfort of building oc-

cupants. Early work involved purely empirical relations between physical variables and thermal

sensation ratings from occupants in laboratory studies [76]. However, none have set the baseline

for how thermal comfort is measured as much as the largely celebrated work by Fanger [16]. His

PPD-PMV (Predicted Percent Dissatisfied - Predicted Mean Vote) model has been widely accepted

for design and field assessment of comfort conditions, and is the industry standard for measurement

of thermal comfort, as set forth in ISO (International Organization for Standardization) Standard

7730 [36], and many ASHRAE (American Society of Heating, Refrigeration and Air–Conditioning

Engineers) standards as well. Gagge et. al., [26] proposed an extension of Fanger’s PMV, improving

the accuracy under sweating conditions.

According to Fanger, [16], the following are definitions of PPD and PMV:

PPD Predicted Percent Dissatisfied, predicts the expected fraction of a large group that will align

with a subjective assessment of hot or cold above an absolute PMV level of 1.5 scale units

(between slightly warm and slightly cool). It is basically an expression of the “potential

complainers”.

PMV Predicted Mean Vote, predicts the subjective thermal sensation rating of a large group based

on 6 variables (4 environmental, 2 personal) that affect the human heat balance:

1. Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personal
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2. Clothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personal

3. Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environmental

4. Mean Radiant Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environmental

5. Relative Air Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environmental

6. Air Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Environmental

Quantitatively, PMV is measured on the ASHRAE [5] thermal sensation scale, ranging from

{-3...3} as follows:

-3 . . . cold

-2 . . . cool

-1 . . . slightly cool

0 . . . neutral

1 . . . slightly warm

2 . . . warm

3 . . . hot

In general, approximately a 3oC change in temperature is necessary to detect a thermal

sensation vote by one unit or temperature category, according to the ASHRAE Handbook [5].

|∆T | ≈ 3× PMV (2.1)

where |∆T | is the absolute deviation of the space temperature from optimal in oC. Fanger related

PPD to PMV via the following equation:

PPD = 100− 95e−(0.03353PMV 4+0.2179PMV 2) (2.2)

From Eqns. 2.1 and 2.2, we can derive the following relations:
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PMV PPD |∆T|
units (in %) (in oC) (in oF)
±1 26.12% 3oC 5.4oF
±0.5 10.23% 1.5oC 2.7oF

0 5% 0oC 0oF

Table 2.1: Table of Thermal Comfort Equivalences

The ASHRAE Handbook [5] guideline states that for a resting person wearing trousers and

a long-sleeved shirt, thermal comfort is experienced in a still environment at Topt = 24oC = 75.2oF .

Here we see the use of the 2 personal comfort factors that influence the PMV in determination of

the optimal thermal comfort temperature. The typical definition of dissatisfied is anyone voting

more than -1, 0, or +1 PMV units in absolute value. However, if we consider the actual threshold

that defines a zone of comfort around typical building occupants as opposed to the threshold of

dissatisfaction, then the range of acceptable PMV values shrinks to [−0.5, +0.5]. We know from

Table 2.1 that ±0.5 PMV units ⇔ |∆T | = 2.7oF . Therefore, the range defining the thermal

comfort zone is 75.2oF ± 2.7oF , or Toptε [72.5oF, 77.9oF ], where Topt defines the baseline thermal

comfort range based upon the ASHRAE guideline. Using Topt, and combining Eqns. 2.1 and 2.2,

we obtain the following relation:

PPD = 100− 95e−(3.94×10
−5(T−Topt)

4+2.56×10−5(T−Topt)
2) (2.3)

where Topt and T are in oF. Figure 2.1 illustrates the qualitative nature of PPD’s variation

with both PMV and space temperature. There is an interesting passage in Fanger’s original work,

[16], where he conjectures what it means qualitatively, for example, when PMV = -0.3. We can see

from Fig. 2.1 that the optimal temperature occurs at 5% PPD. Hence, it is impossible to reduce the

complaint level to 0% PPD. But is PMV = -0.3 acceptable ? According to the heuristics described

earlier PMV ε [−0.5, +0.5], it is, but people are different in their tolerance levels and there is

naturally a certain variance in the thermal sensations of a group. Fanger says that any complaints,

however few, are often taken as an indication that the (HVAC) system is defective, or at least badly



12

operated. As a result, facility operating personnel will often expend man-hours and overhead charges

in response to that complaint. The corrective action is often to change the thermostat setting simply

because of complaints of individual persons in a large group. So therefore these particular persons

will perhaps be satisfied, but on the other hand, others may become dissatisfied. As a result even a

larger number than before may complain, if an “optimal” condition existed previously. Complaints

can’t be altogether avoided, but they may be reduced by keeping PMV=0, or the space temperature

at an optimal value.
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Figure 2.1: Plot of PPD vs. PMV and Space Temperature

A natural question then arises: Should facility operators change the thermostat setting in

response to thermal sensation complaints ? We might consider that “warm and cold” dissatisfied

levels are associated with the average or majority response of a group of people in a zone or space

within a building, rather than with a single individual. Perception of temperature is influenced by

several physiological and psychological factors, as well as group dynamics, which may vary from

individual to individual, from time to time, and group to group. We’ll discuss specific methods of

responding to complaints in more detail based upon modelling these random components later in
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the chapter, based primarily upon work by Federspiel [19, 22].

Information Technology

The advancement of information technology and databases over the past decade has seen

quite an improvement. This has been very important in the maintenance sector of the commercial

building HVAC industry. Often, tracking of maintenance labor and material costs had been difficult.

Costly overruns and lack of real-time and accurate information on system status prevailed due to

unsophisticated and ungainly stove-piped information repositories for facility managers having to

track multiple large buildings. With the advent of newer more robust maintenance management

systems that take advantage of the power of relational databases, these systems have allowed for

more accurate and reliable information tracking capabilities. Fewer cost overruns, human errors

and faults in HVAC systems can be attributed to lack of real-time information and unmanageable

information sources.

2.1.2 Standards

Examples of prominent codes or standards pertinent to indoor environmental quality and

energy usage in commercial buildings are listed and briefly described in Table 2.2.

2.1.3 Solutions and Treatment of problems

Energy

Here we list some of the specific methodologies that achieve certain energy goals, applying

to what’s done currently in practice that include the following:

Load shedding A strategy designed to save energy costs in peak electrical demand by picking

specific periods to cut back in lighting, plug, and other non-essential loads.
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Title Organization Primary Content

ASHRAE/ANSI Standard
55-1992, Thermal Environmental
Conditions for Human
Occupancy[4]

ASHRAE∗ ANSI† Acceptable range for
temperature, humidity, and air
velocity

ISO 7730 Standard 1994
Moderate thermal environments
determination of the PMV and
PPD indices and specification of
the conditions for thermal
comfort [36]

ISO‡ Acceptable range for
temperature, humidity, and air
velocity

10 CFR§ Part 435 subpart A US Dept. of Energy
(Federal)

Energy efficiency in new
commercial and multifamily high
rise residential buildings

ASHRAE/IESNA¶ 90.1-1989[3] Typical State Energy
Code

Energy Efficient Design For New
Buildings Except Low-Rise
Residential Buildings

Title 24, Part 6 California’s
Energy Efficiency Standards for
Residential and Nonresidential
Buildings (meets or exceeds
ASHRAE/IESNA 90.1-1989)

California Energy
Commission (State)

The California Building Code
establishes building energy
efficiency standards for new
construction (including
requirements for entire new
buildings, additions, alterations,
and in nonresidential buildings,
repairs).

∗American Society of Heating, Refrigeration and Air–Conditioning Engineers
†American National Standards Institute
‡International Organization for Standardization
§Code of Federal Regulations
¶Illuminating Engineering Society of North America

Table 2.2: Standards, codes, and guidelines
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Night setback A thermostat setting strategy that provides for reduction in energy usage by alter-

ing the setpoint to a higher or lower value during unoccupied periods, assuming a single day

shift operation, and also depending on the season. Typically, the setting remains at a value

that is commensurate with achieving thermal comfort during the occupied periods, and then

at the start of unoccupied period (at night), the setpoint is adjusted to a value that will result

in the usage of the least amount of energy according to the particular season. Typically in this

type of strategy, the setpoint is returned to the thermal comfort value several hours prior to

the beginning of the occupied period, so that the building has sufficient time to reach thermal

equilibrium.

Physical Plant retrofits These are architectural and/or mechanical changes to building structure

or systems, by either passive (typically architectural), or active (mechanical) means that were

not originally included in the design of the building. These changes can be made to achieve

grater overall energy efficiency, thermal comfort and cost savings.

Thermal Comfort

Clothing Modification Building occupants are typically able to adapt well to their surrounding

environment within certain limitations. Also, due to the natural variation in the thermal

comfort thresholds of individuals within a group, some building occupants dress in layers in

order to accommodate for their personal thermal comfort needs. Obviously, the seasonal effect

of having clothing modification as a way of coping with thermal comfort needs is evident by

lighter dress in the summer season and heavier clothing in the winter season.

Physical Environment Modification Depending on the specific type of zone, building occupants

may have other ways of coping with personal thermal comfort mismatches rather than clothing

modification alone. Such methods include actual modification of the surrounding environment

if the option is available, such as the use of natural ventilation via windows and fans, as well

as personal electric space heaters, etc.
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Setpoint Adjustments For zones that contain a local control point (thermostat), this is an obvious

way to allow for providing thermal comfort to building occupants in a zone. The thermostat

can be adjusted according the to desires of the majority of the building occupants during the

occupied period. In practice, facility operators are often called on to respond to these thermal

sensation complaints. They will adjust the setpoint in response to the needs of the building

occupants. Sometimes building occupants themselves will “tamper” with the thermostat even

if against the zone policy in order to provide themselves immediate thermal comfort. This

may partly be due to the lengthy wait and/or bureaucracy of getting a timely response to the

complaint, which may be caused by inefficient management of the business process. However,

these inefficiencies can be due to any other number of reasons, including a poor maintenance

management system, inaccurate classification of the problem causing the thermal sensation

complaint, etc.

2.2 Current Research Efforts

In this section we address some of the current research efforts that attempt to improve

the status quo of building operations as it pertains to HVAC systems, in addition to some of the

problems and issues cited thus far.

2.2.1 Energy

Passive Solutions

There are currently many research efforts studying the use of passive or natural building

designs and modifications to achieve both thermal comfort and energy objectives. Architectural

and structural design in general are the subject of a study performed by Zmeureanu and Fazio [77].

They provide an example of how an integrated approach to building design determines the impact

of a structural system on energy consumption. The main idea caters to integration of computer
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simulation and interactive software programs that can be used to estimate the thermal performance

of buildings, rather than relying on the designer’s intuition. The use and integration of programs

such as these into existing management portfolios would also allow for energy consumption of large

commercial buildings to be estimated, and used to develop multiple alternatives for retrofitting

during operation as well as in pre-commissioning design.

Although performed as a residential study, Reddy et. al. [60] present ideas which are

also relevant to commercial buildings in terms of practical implementation of methodologies to save

energy by using peak–load shaving. The method appeals to the intelligent use of building thermal

mass, involving pre–conditioning/pre–cooling of the structural thermal capacitance and furnishings.

The thermal mass is cooled during off–peak hours and slowly warmed during peak periods, hence

absorbing heat that otherwise cooling air–conditioning (AC) would have to remove. This allows for

the AC to be completely shut off during these periods, without affecting building occupant comfort

significantly. Cool storage by means of ice or chilled water is an alternative sometimes used, but

exclusively for commercial buildings.

Seem and Braun [63] present an adaptive algorithm that uses deterministic and stochastic

techniques involving look–up tables with updating, in order to forecast the electrical demand in a

building. It is necessary to develop forecasts of cooling loads and electrical demands for buildings

that use the type of HVAC control that employs thermal storage systems, such as the one described

earlier [60]. In this way, thermal storage systems can be utilized for building pre–cooling during the

days identified with high cooling loads, so that peak electrical demand can be reduced.

Similar studies throughout the past decade [1, 65, 62] show that the use of passive techniques

to minimize energy usage and improve thermal comfort is an ongoing effort. These are by no means

the only studies, and it does not represent an exhaustive dossier of research efforts. Some of the

techniques discussed include but are not limited to the use of natural ventilation, fenestration, phase-

change materials, as well as several other basic components of the building fabric. One study in

particular [1] considered a parametric sensitivity analysis of various building parameters including
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convective heat transfer coefficients, zone temperature swings, and the thermal mass of the floor,

ceiling, walls, furniture and carpeting. It was found that there are specific limitations, advantages

and disadvantages to varying each of the factors. The use of passive methods does not require

any energy saving actions to be implemented since they are typically design and/or construction

considerations attempting to eliminate potential problems at their source. However, these methods

require great attention to detail, as well as expert–level knowledge of the fundamentals of the physics

and heat transfer that is involved in the complex dynamics of building thermal interactions. As

such, obtaining valid quantitative descriptions of these interactions for computer simulation or other

purposes is often difficult, and requires mathematical models based upon partial differential equations

which may have no analytic solutions.

Active Solutions

Active solutions for the use of energy reductions can provide alternative methods in which

the use of energy analyses and/or optimization become useful. There are some active solutions that

deal more with the structural and architectural aspects of building design, such as ones mentioned

in literature [62], including passing cool fluids or air through pathways deliberately cast into the

structure of the building. However, in this section we focus mainly on the use of control algorithms

and optimization–based active solutions, and choose three primary sources of research to initiate a

thorough discussion. These three sources do not represent a comprehensive treatment by any means,

but rather are meant to serve as a sample of the most relevant literature to our discussion.

In [11, 58, 34], optimal control is investigated as a method for achieving reduced energy

usage and improved building occupant thermal comfort for thermal energy storage systems described

in the previous section. Optimal controllers are hailed as the theoretical upper bound (best possible)

for achieving their specified objective, minimizing some given cost function, often with the use of

dynamic programming. All three papers use similar cost functions, as follows:
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J =
L∑

k=0

RkPkTs (2.4)

where
k = hour of the day
L = Total number of hours in simulation
Rk = Cost of electricity at hour k
Pk = Plant’s electric power consumption at

stage k: in some cases this is a func-
tion of other variables, such as zone tem-
perature, other uncontrolled variables, or
broken down into more tangible elements
such as fan, heating, and cooling power.

J = Cost of operating plant for the length of
time given by L

Ts = Sampling interval (time between samples)

Each author has their own take and specific objectives in the approach they use for optimal

control. Each study also has its advantages and disadvantages. For example, the earliest work by

Braun [11] also imposes an additional thermal comfort constraint on the zone temperatures at each

time step in the simulation. Therefore, the optimal control problem is posed as a constrained linear

optimization problem over the cost of energy. It is proposed that one of the results of the optimal

control solution should be the development of an efficient policy for adjusting the thermostat setting.

Several alternatives are discussed and compared, including night setback, as well as dynamic building

control. Dynamic building control differs from night setback in that the space temperature setpoint

drifts upward during the occupied periods, as opposed to remaining constant. At the start of the

unoccupied period, all equipment is turned off and the temperature floats, until just prior to the

time at which occupancy is resumed, when the equipment is turned on in order to pre–cool the

building. Thermostat setting policies are an important subject of Chaps. 6 and 7, so this work

serves as a solid foundation.

As seen in work by Henze et. al., [34], a similar optimal control objective was posed, however

it is unconstrained in the sense that there are no limitations based on thermal comfort. However,

the study does provide several substantive and comparative methods for forecasting building cooling

loads as well as weather information. The controller is predictive, and takes the stochastic nature
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of the problem into account. A broad range of predictive methods were implemented, but all

appear to achieve close to the cost savings that can be achieved by the optimal controller with

perfect prediction. Even better performance can be achieved with more sophisticated algorithms,

specifically the ANN (artificial neural networks).

The optimal control solution derived was different from Braun’s in that a charging and

discharging strategy for a generic thermal energy storage system was computed as opposed to zone

temperature setpoints, so the solution caters more to that specific type of HVAC system. This

controller was also compared to some other conventional control strategies typically used for this

particular HVAC system type as a benchmark. Additionally, the Rk variable in the optimization

shown in Eqn. 2.4 is based on several different rate structures for comparison. With the advent of

the deregulation of utilities, more flexible rate pricing structure will become available, hence some

fictitious sinusoidally varying rates were developed for comparison to more typical on-peak and

off-peak rate structures used in a utility–regulated environment. It was found that the proposed

controller can more adequately account for the complex rate structures, and in fact is more robust

with respect to prediction and model quality, and has a significant performance benefit over the

conventional controllers.

Finally, Price and Smith [58] show that optimal control can be used to develop strategies

for shifting building mass thermal energy storage via charging and discharging, similar to the paper

previously discussed [34]. However, here the quadratic cost function is slightly different in that it

isolates the terms based upon the specific HVAC systems components contributing to expenditure

of energy, such as fan, heating and cooling power. Additionally, it is a constrained optimization

based upon thermal comfort, by using the PMV index. Similar advantageous results are achieved

as in the previous two papers. They are realized through the use of optimal control, as well as other

informative parametric findings concerning the amount and location of building mass and allowed

limits for the PMV index. However, the rate structure used is strictly on/off–peak, and the PMV

constraint does not clearly relate to dynamic building occupant thermal comfort levels, but rather
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to a constant value of ±0.5 during occupied periods.

To close this section, we note that there are several positive and advantageous results that

can be derived from using optimal control with energy costs as the object of the problem formulation,

with thermal comfort as one of the primary constraints. However, there are some obvious limitations

as well as some restrictions in the literature as to the types of systems, operational modes, etc., which

these methods have been applied to. A more general framework that considers all possibilities of

building, HVAC system, operational mode types, etc. needs to be developed for optimal control to be

considered as a potentially industry–enhancing breakthrough technology, even though it is relatively

well-known, older, and basic in the modern controls world. This has been recognized by Braun

in recent work [10]. However, the implementation of optimal control has not unanimously been

endorsed, even for the attainment of more advanced objectives than local zone setpoint regulation.

More simple PI controllers do a good job of this at the local level for most buildings and have modest

computational memory and processing requirements. Hence, they remain the defacto standard, while

the advanced objectives are often left in the hands of the facility managers, unassisted by available

computational power for information consolidation. Chapters 6 and 7 will introduce an optimal

control algorithm that is implemented via thermostat setting changes. The utility of this algorithm

will be examined in detail, to determine the practical suitability of achieving the desired objectives.

The objective function uses thermal sensation complaint statistics, while penalizing energy costs.

Because energy and complaint costs both have a monetary basis, they have an equal footing,

unlike some of the other examples presented thus far, using constrained optimization, etc. The cost

function might look something like Eqn. 2.5 below, which is similar to the idea presented in Martin

et. al. [48].

J =
L∑

k=0

RkPkTs + Ck (2.5)
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where
k = hour of the day
L = Total number of hours in simulation
Rk = Cost of electricity at hour k
Pk = Plant’s electric power consumption at

stage k: in some cases this is a func-
tion of other variables, such as zone tem-
perature, other uncontrolled variables, or
broken down into more tangible elements
such as fan, heating, and cooling power.

Ck = Cost of complaints predicted by complaint
model

J = Cost of operating plant for the length of
time given by L

Ts = Sampling interval (time between samples)

2.2.2 Thermal Comfort

In this section, as in the last, specific research results and studies having relevance to the

objective of this thesis are addressed. Again, they are meant to act as a representative cross–section,

not as “the final word.”

General Thermal Comfort

Fanger’s PMV index has been the hallmark of many research efforts to develop improved

methods to provide comfortable environmental conditions for building occupants. At the same

time, facility designers and operators are also concerned with using the least energy possible to

accomplish that purpose. Strategies have been adopted based on operating HVAC systems in the

most intelligent way to make them capable of serving both purposes. In a study by Hamdi et. al.

[29], a new approach to predicting the thermal sensation index of human comfort is proposed, using

the six factors that the PMV index is based on. It is specifically touted as being usable for feedback

control in HVAC systems. Here, fuzzy and neuro-fuzzy methods were used for the development of

classification functions. An example was presented with the practical use of heuristic rule-based

methods. Fuzzy methods are seemingly a very nice fit given the qualitative and linguistic nature of

how the PMV index is constructed (cold, cool, slightly cool . . . ).

The main reason for developing this method is to solve a problem with computing the
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PMV directly from the six factors. Fanger gave a very complex nonlinear equation relating PMV

explicitly to these six variables. It is much too complex and is not suitable for use in real-time

application with on-line adaptive calibration and feedback control of HVAC systems, due to the

iterative nature of the computations required to arrive at a solution. Previous work [66, 17] has shown

that there may exist ways to simplify the PMV equations so that they are more easily manageable

for computation. The main simplifications in these studies were linearization assumptions allowing

for explicit computation. However, the drawbacks involved linear parametrization problems as well

as some non-linear effects that became important when considering all variables.

In summary, Hamdi et. al. [29] provide a step in the right direction, because none of the

above simplifications were made, and no iterations were required to arrive at a result for obtaining

the PMV. Additionally, the results for different combinations of the factors involved in the PMV

model are quite near the computed actual PMV values for the same combinations using Fanger’s

formulas. The idea of using fuzzy logic to obtain these results is an insightful one, however the

practicality and actual testing and/or simulation of this new fuzzy-based PMV index in an actual

feedback control system was not presented. This new algorithm also seems to be heavily based upon

the use of subjective designer rule–based heuristics. Additionally, all six variables must be qualified

with some linguistic modifier in order for this algorithm to compute the PMV.

It is difficult to qualify the personal comfort variables for a group of building occupants

in a zone, and probably a better idea to quantify the environmental factors than qualify them.

Unfortunately, there is still no good way to measure PMV for use in a control system, to obtain

an adequate representation of the thermal comfort level of the majority of the occupants. However,

we may be able to use the building occupants as a source of information to qualify and quantify

their own comfort levels, rather then measuring it via the factors of the PMV and assuming that

it’s an accurate representation. Thermal sensation complaint data exists within the databases of

maintenance management systems and is ubiquitous, “free” data. It also provides an indication of

comfort directly related to the human condition. The database or the building occupants themselves
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can be thought of as “sensors” that capture the essence of the informational content of the existing

comfort level. Therefore, unsolicited building occupant feedback can be thought of as information

that may suitable for use in a feedback control system. Although it is not directly measurable, or

quantifiable with the PMV index, there are ways to shape and consolidate this data.

Solicited Occupant Feedback

Questionnaires have been used in research studies [74, 42] in order to solicit occupant

feedback concerning general and specific perceptions of their immediate surrounding environment.

The key factors that building occupants were asked about or find most important can be condensed

down to the following list (not necessarily listed in order of importance):

1. Thermal Comfort (temperature)

2. Air Quality (ventilation and health)

3. Lighting

4. Control of Environment

5. Space and Privacy

Although facility engineers may put effort into designing and measuring environmental

variables to provide comfortable conditions, rarely are the occupants themselves polled as to how

satisfied they are with their building and its HVAC services. Therefore, the use of occupant feedback

as a viable information source is somewhat under-utilized. However, the use of occupant feedback

is not completely without its limitations. In a perfect world building occupants could be modelled

as virtual sensors. However, their behavior is not at all predictable due to learned responses, as well

as sociological and cultural impacts of obtaining information from them. In fact, fluctuations in

occupants’ comfort levels can be related to several different confounding factors, including actions

or inactions of building managers. Yet it still holds that the majority of information received
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from building occupants is typically quite beneficial, and can be integrated with other sophisticated

monitoring techniques and building systems for the overall goals of improved occupant thermal

comfort and satisfaction.

A study by Fountain et. al. [24] uses the technique of soliciting feedback in order to gain

knowledge about thermal comfort for short–term occupancy in hotels. This was done to provide a

foundation for the development of a new thermostat control system that implements microprocessor–

based logic, addressing the needs of temporary occupancy while reducing energy consumption. This

study provides an excellent example of how questionnaires and solicited occupant feedback can

be used pragmatically. The use of the questionnaires were beneficial in the design of the control

system by finding the thermal expectations and preferences of the building occupants. Some of these

included the need for user–friendly thermostat system controls, annoyance with slow HVAC system

response to commands, poor air quality, uncomfortable thermal conditions, etc. This feedback aided

in the design of the new control system, which accounted for this information, and used occupancy

sensors, and other techniques such as controlled temperature drift, etc. in order to both provide for

the dual objective of thermal comfort and reduced energy usage.

Unsolicited Occupant Feedback

Preliminary treatment of the impact, statistical analysis and conjectured use of unsolicited

occupant feedback of thermal comfort conditions was first presented by Federspiel [18]. The study

presents a comprehensive examination of complaints taken from a large empirical dataset from

actual operating buildings. This includes measurements of frequencies and statistics of temperatures,

response times, and actions taken in association with complaints found in logs. The author stated

that prior to the development of operational policies for managing unsolicited complaint costs, a

basic yet thorough understanding and presentation of unsolicited complaint behavior needs to be

completed. Many key aspects of building operations that may cause the conditions leading to

complaints and general diagnostic lapses had not been well documented prior to the study. The
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most interesting findings of this initial study were the following :

1. Thermal sensation (hot or cold) complaints are the most common type of unsolicited environ-

mental complaints in buildings.

2. Thermal sensation (hot or cold) complaints are mainly caused by either control system perfor-

mance problems or faults in the HVAC system, as opposed to building occupant preferences.

3. Most actions taken in response to thermal sensation complaints involve adjusting a control

system setting of some sort.

4. There is great potential for reducing HVAC maintenance labor costs by reducing the frequency

of hot and cold complaints.

In a follow–up paper, [19] Federspiel presents a statistical model based upon level–crossing

theory to develop a way to predict the frequency of hot and cold complaints. Data from an actual

commercial building was measured and used to develop estimates of the model’s parameters. The

parameters of interest are the frequency (νT ), mean (µT ), standard deviation (σT ), and standard

deviation of the rate of change (σṪ ) of temperatures at which building occupants complain of being

too hot or too cold. This model is of great importance to this thesis, and provides us with the static

equivalent to a dynamic extension of it in future work. [46, 47]. Theoretically, we can think of there

being 5 processes in this model. The main process is the building temperature trajectory, and each

hot and cold complaint level has 2 processes associated with it as follows:

Complaint Level or Process A continuous trajectory representing the fictitious statistically–

based temperature level at which that the majority of building occupants in a zone complain

of being too hot or cold.

Complaint Events A discrete random sequence which represents the exact instants in time at

which the building occupants complain of being to hot or cold. This process coincides with

the continuous building temperature trajectory at these particular instants.
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Figure 2.2 is provided to aid in illustrating the concepts stated above.
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Figure 2.2: Plot of Complaint Process Interaction with Building Temperature

Essentially, the continuous complaint level statistics are unknown model parameters which

cannot be measured and are shown in Table 2.3 (capital subscripts used for continuous levels).

Mean of T∗ Standard
Deviation
of T

Standard
Deviation
of Ṫ

Hot µTH σTH σṪH

Cold µTL σTL σṪL

∗Refers to an arbitrary complaint temperature level

Table 2.3: Table of Non-Measurable Complaint Model Parameters

Estimates of the non-measurable model parameters in Table 2.3 are mathematically based

upon the measurable statistics shown in Table 2.4 (lower case subscripts used for discrete event

processes and capital subscripts used for continuous levels). Assuming that building temperatures

are uncorrelated with, or independent of the high and low complaint levels, the formulas relating
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the parameters of the model listed in Table 2.3 explicitly to the data measurements listed in Table

2.4 are shown in Eqns. 2.6- 2.11.

Frequency Mean of T Standard
Deviation
of T

Standard
Deviation
of Ṫ

Hot νh µTh
σTh

Cold νl µTl
σTl

Bldg µTB σTB σṪB

Table 2.4: Table of Measurable Statistics
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ṪB
(2.10)

σṪL
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The stated independence assumption, made in Federspiel’s study, [19], is valid if the coping

behaviors of building occupants do not vary with building temperature. The performance of the

temperature control system can be characterized by the measured building temperature statistics.

The mathematical model relates them to complaint levels. Examples of how the model might be

used in optimization of the operational performance of buildings was presented. This involved

a balanced tradeoff between energy usage and thermal comfort need. Additionally, an economic

analysis predicted significant cost savings. An example of this is presented in other work [47, 46],

where computer simulation methods were used to compare two different strategies for responding

to unsolicited thermal sensation complaints in buildings. The modelling parameters for Federspiel’s
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original work [19] have also been validated in a follow–up study, [22, 21]. These re–calibrated

parameters provide the basis for the optimal control and alarm results in Chapters 6 and 7. The

optimal alarm results presented in Chap. 3 are based upon the original model parameters from [19].

2.2.3 Commercial Building HVAC Systems

The design, operation and maintenance of commercial building HVAC systems has seen

most innovation in recent years within the more practical aspects of the field. However, there is

certainly room for innovative ideas and theories to be developed in order to improve overall HVAC

system advancement and utilization. There are some recently published papers [51, 64], which

address some of the new technology that is available in current practice, and expresses the potential

for the use of available information sources with this new technology using fundamental ideas.

In [51], an introduction to DDC shows that microprocessors, memory, user interfaces,

communications, and power supplies are now ubiquitous in the HVAC industry, and are making

continuous advancements. These components are part of modern building automation systems and

they can and should drive the future of applying more sophisticated and advanced control algorithms.

In this way they can lead to higher levels of integrated building operational performance, satisfying

thermal comfort needs as well as saving energy.

Seem et. al. [64] develop a new “control performance monitor”, which implements a

basic EWMA–based algorithm to compress and integrate large amounts of data. EWMA is the

exponentially–weighted moving average, which can simply implemented as a digital filter as follows:

ζk+1 = (1− λ)ζk + λxk (2.12)

zk = (1− λ)ζk + λxk (2.13)
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where
ζk = Internal state of digital filter at

discrete instant k
xk = Input to filter (measured data)
zk = Output of filter (EWMA value)

The EWMA parameter, λ, also known as “the forgetting factor,” places more weight on

recent values of the measured variable of interest than past values when assigned a large value,

and less weight on recent values when assigned a smaller value. Since modern building automation

systems have such a large capacity for storing data, there is sometimes an information overload

at the end–user point of access. Hence there seems to be an inordinate amount of data, but no

clear theories or methods that have been developed to make sense of all of it in a simple fashion

that makes facility operators’ and managers jobs simpler rather than more complex. Some of the

variables that are monitored can be difficult to interpret. One example provided is that of control

alarms. With the ability to perform trending and produce nice graphs with modern automation

systems, exceedances of critical HVAC system thresholds are easily detectable. However, the limits

themselves are often set by the manufacturer, and on–site facility operators may not have the same

training or expertise to determine if the alarm limits are dubious. If the limits are too wide, faults

may go undetected, and if limits are too narrow, false alarms may result.

Seem’s treatment of condensing data by using the EWMA method will allow building

operators to identify HVAC equipment that is wearing prematurely due to excessive movement.

This is done by measuring the EWMA duty cycle of actuators in the HVAC system. Other EWMA

indicators include control system error, VAV box airflow error, whose out–of–limit values might

indicate either unstable or poorly tuned PI controllers. Basic indicators such as these may also help

to aid facility operators to prioritize maintenance for HVAC system components having the highest

normalized EWMA values. Since there are different EWMA indicators, response or investigation of

problems causing these out–of–limit values can be based upon the current management policy. If

management views uncomfortable occupants as more urgent than flow errors in a VAV box, then the

rules for such response are purely left to their discretion. The EWMA for control system temperature
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error may provide a potential indication of uncomfortable conditions for occupants, and the EWMA

for flow errors in a VAV box might be indicative of a blockage or worn component. The information

is available for interpretation and the response of those operating the system can be completely

decoupled from it.

These performance indices were also conjectured to be potentially useful in a real-time fault

detection system, aided by comparison of stored data in an expert system database. Additionally,

diagnostic systems can be developed from pattern use and trending of the performance indicators to

identify causes of faults, helping to create and populate the expert system database. Seem’s “control

performance monitor” idea is an excellent way of consolidating information for the express purpose

of addressing the problems cited at the very beginning of this thesis. Practical implementation is

not a roadblock since the algorithm requires so little memory. However, the scope of indicators used

might be broadened to include such metrics as the predicted complaint rate.

2.2.4 Hybrid Issues

Attempts to link together several common problems with the control of HVAC systems to

the objectives of improved occupant thermal comfort and reduced energy usage from an enterprise–

level standpoint has seen some interesting treatment in research over the past decade. Fountain et.

al. [24] used varied information sources including solicited occupant feedback, occupancy sensors,

and other techniques such as controlled drift of thermostat setpoints , etc. in order to provide for

the attainment of these objectives. However, heuristic methods were used as part of developing a

subjective rule-base in the control system. As is well–known, there is no known analytic approach for

a theoretical derivation and analysis of a control system using such rules. Miriel and Fermanel [50],

develop similar rules in order to deal with improved performance and thermal comfort, for a specific

type of HVAC system (gas boiler regulation). Here thermostat setpoint policies for residential use

are derived, based on a more formal appeal to fuzzy logic. The thermostat essentially “learns” the

characteristics of the HVAC system, and as such provides a satisfactory comparison to a classical
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controller, both in simulation and experimentally in terms of energy reduction and thermal comfort.

The most comprehensive treatment of these issues from an “enterprise” level, is shown in

[67, 71, 72]. Shoureshi et. al. [67] take the first look at the integration of multiple methodologies

to achieve the objectives of occupant comfort, minimum energy, as well as maintenance cost. The

methods used are fuzzy logic, optimization and optimal control, and is implemented from a hier-

archical , enterprise–level standpoint. The author recognizes the need to develop a control system

that can ‘learn’ the characteristics of the building and determine the best control strategy regardless

of building type, HVAC system type, disturbances, etc., accounting for time-varying effects. In this

way the controller designed is a ‘supervisory controller’ of sorts, and can develop new strategies

to achieve the desired objectives. A theoretical treatment is given to the derivation of the algo-

rithm that is essentially a fuzzy control system implemented hierarchically. Standard LQ (linear

quadratic) optimal control methods are integrated with the developments of fuzzy logic formulation

in matrix/state–space realization. Now there are some disadvantages due to the introduction of the

fuzzy control, which has to do with the fact that a true optimal solution in the theoretical sense

cannot be attained. This is due to a potentially long optimization computing time requirement,

which is on the same order of magnitude as when the result of the optimization is needed. However,

this may be less of a problem now with improved processing and memory capabilities.

The main goal of the supervisory controller, however, is cost optimization. The results

provide setpoints for different HVAC control subsystems. Again, motion detection via sensors similar

to the presentation by Fountain et. al. [24] is proposed. System identification is also another

theoretical construct which becomes useful in the supervisor. The author creates some fictitious cost

functions, taking into account similar quantities as in [34, 11] for the energy penalty. Furthermore,

he develops a comfort penalty function based mathematically upon linear combinations of sigmoid

functions of the form:

y(x) =
1

1 + e−αx
(2.14)
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This comfort penalty expense becomes part of the optimization itself, as opposed to being

a constraint. The cost associated with lost of productivity is how the penalty is measured, and

it is parameterized by deviation from “optimal” setpoints, as well as α, which characterizes this

cost associated with limiting temperature deadband effects. An example of such a comfort penalty

function is show in Figure 2.3.
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Figure 2.3: Sample Thermal Comfort Penalty Function

This treatment is very comprehensive and does a good job of generalizing the plant in

question, rather than having application only to a particular type of system. However, the manner

in which thermal comfort is penalized is devoid of using any measurements of actual thermal comfort

of building occupants, and instead relies on a fictitious extrapolation of the most commonly known

factors affecting thermal comfort (namely temperature). Also notice that with proper choice of α

the comfort penalty function resembles Figure 2.1, which is simply the PPD–PMV relation.

Follow-up work based on this original study was performed by Teeter and Chow [71], in

which the incorporation of artificial neural network and fuzzy logic methods were used for system

identification and control of an HVAC system. The authors stress the importance of adaptive and

learning techniques to be integrated with optimal control and other advanced techniques for the

HVAC field. The results indicate that ANN’s demonstrate the capacity to learn changes in plant
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dynamics, and are able to accurately predict future behavior. ANN’s in general have been found

to exhibit an excellent propensity for learning HVAC plant models, and have been considered in

many other studies for comparison to other techniques, some of which are based on first principles.

Henze et. al. [34] as well as Krieder and Haberl [40], Haberl and Thamilseran [28] show that

the performance of ANN’s are superior in such comparisons. In the last two of these studies, the

accuracy of calibrated models for prediction of energy used was reviewed in a “competition” to

determine which of the contestants could provide the best match to an unknown validation data set

from a building, given a training set. ANN’s and/or statistical models always came in first.

Finally, Breeman and DeVries [72] provide a slightly different approach, although there

are some similarities in terms of using a hierarchical control structure. The key idea is that com-

plex problems for which standard solutions are not available can be solved by integrating existing

solutions. In doing so, the concept of autonomous agents in the field of AI (artificial intelligence)

is employed. Each agent has its own purpose, and combining them together by highlighting all

dependencies gives a supervisory controller approach to solving the problem. Some of the methods

that are used by individual agents include finite state machine logic, ANN’s, basic local PI and

PID (Proportional-Integral-Derivative) controllers, etc. The objectives that they achieve are set-

point generation, adaptive tuning, and basic thermostat operation to attain user comfort, minimal

switching, and robust control performance of the HVAC system.

The central idea is based upon a divide and conquer bottom–up approach to developing

a solution, and structuring the problems coherently. Potentially, this whole framework might be

suitable for analysis and synthesis by using methods still being developed in the area of hybrid

control theory. This theory deals with both continuous and discrete event systems operating in

unison. The objectives discussed earlier in previous research [67, 47, 64] may be good candidates for

this independent agent–supervisory control methodology, and hybrid control theory may be used for

stability analysis and supervisory control synthesis.

Although much of the preceding two sections have been dedicated to the treatment of HVAC
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system research at an “enterprise” or hybrid level, an important research idea introduced by Seem

et. al. [64] was also presented. It was discussed how exceedances of critical HVAC system thresholds

are detectable, but the alarm limits often have dubious settings. In Chapter 3 and 7 of this thesis,

we provide the theory and design guidelines for implementing an optimal alarm system, which elicits

the fewest number of false alarms for a fixed detection probability. Although the alarm system is

intended for anticipation and warning of future thermal sensation complaints, the fundamental idea

presented can easily be extended to an HVAC system and relevant monitored processes as proposed

by Seem et. al. [64]. In fact, it is possible that the methods presented can be used for fault detection

of a general nature, contingent on the fact that a critical level/threshold of some sort exists, with

respect to some random process.
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Chapter 3

Optimal Alarm

3.1 Introduction

This chapter introduces the theory and methodology that combines the practical appeal

of Kalman prediction techniques with level-crossing theory and optimal alarm system design. A

comprehensive demonstration of practical application for the design of optimal alarm systems has

been covered in the literature [69, 70]. However, the theory and practice for optimal alarms has

also seen modest coverage by other authors as well [8, 15, 45, 59]. The latter is by no means a

comprehensive list, but illustrates a cross-section of the primary authors responsible for introducing

optimal alarm systems in a classical and practical sense. It was shown [69, 70] that an optimal alarm

system can be derived based upon a likelihood ratio criterion via the Neyman-Pearson lemma. This

lemma allows us to design an optimal alarm system that will elicit the fewest possible false alarms for

a fixed detection probability. The likelihood ratio can be written in terms of an event’s conditional

probability, resulting in an intuitively appealing inequality: P (C|D) ≥ Pb. This basically says “give

alarm when we predict that the probability of the event, C, exceeds the level Pb.” Here, D represents

data being conditioned on, and Pb represents some optimally chosen border or threshold probability

with respect to a relevant alarm system metric.
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There may be several applications for the theory and methodology introduced here. How-

ever, we develop the theory in the section that follows based only on a particular example, without

generalization to all possible types of level-crossing events, C. While not general, this example is

still unique and has not been covered in the literature before. Optimal alarm literature focuses on

examples for which there is only a single level-crossing event.

Now, while it is true that the theory developed in the following section is based on a specific

example, this example does have the potential for moderate generalizations. The two generalizations

that need to be made are fairly innocuous. One has to do with the definition of the level crossing

event itself. For our particular application, we’re actually interested in any number of thermal

sensation complaints, or level-crossing events that may occur over a specified time period. This will

result in a complicated multi-dimensional event over a time period spanning many time slices, rather

than just a single level-crossing with two adjacent time slices. This time period can be defined in

multiple ways. Within the building operations domain, shift-based time-of-day complaint rates and

energy usage fluctuate in a predictable manner. Therefore, it is common to expect a peak in the

complaint rate during a specific time of the day, specifically during the morning, or what’s termed

as the “arrival complaint period.” The arrival complaint phenomenon was also hypothesized by

Federspiel [21] as being due to a naturally high metabolic rate during this period. Hence we can

look at breaking down the periods of interest into two distinct timeframes, as itemized below.

Arrival and operating complaints Prior to the start of the beginning of the day (eg. 8 am),

we want to predict an arrival complaint (i.e. an exceedance), and all remaining operating

complaints (i.e upcrossings) for a sliding window of time of fixed length. Note that an arrival

complaint has no restriction on happening at a particular time (i.e. late arrivals are allowed).

Operating complaints only Following the start of the day (i.e. conceivably after the first arrival

complaint), we want to predict all operating complaints any point after the beginning of the

day, for a sliding window of time of fixed length.
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The difference between exceedances and upcrossings is as follows:

Exceedance A one-dimensional level-crossing event, {xk > L}, where L is some critical threshold

level exceeded by a process whose value at time k is xk

Upcrossing A two-dimensional level crossing event, {xk < L, xk+1 > L}

The second generalization that needs to be made is on the basis of the spectral content

of the process and the critical level itself. For the first example considered, and the one which the

theory that follows is based upon, the critical level, L, is assumed to be a fixed, static value. In

our application, the critical value is not fixed, in fact, there are two stochastic critical levels, one

for hot complaints, and another for cold. These levels represent the temperature at which a group

of occupants in a zone would complain if too hot or cold. They are somewhat artificial, because

such temperatures cannot be measured continuously. However, when complaints do occur, the

temperatures can be measured and stored in a maintenance management database. Therefore the

statistics of these levels can be computed from this database repository [19], and used to generate a

very simple 2nd-order model, whose output represents these complaint levels of interest. Both levels

can be characterized as simple 2nd-order stationary, Gaussian processes, as well as the building

temperature process in question [19]. This generalization is perfectly acceptable, as the idea of the

critical level itself being modelled as a stationary, Gaussian process was also recognized by Svensson

as a potential candidate for study [69], p.93. The primary example to be used in this chapter is the

hot complaint level, and its interaction with the controlled process of interest (building or space/zone

temperature).

The most important aspect of this chapter covers theoretical derivations and comparisons

of different approximations for these complicated multi-dimensional events. We need to character-

ize these events in order to determine the alarm region resulting from the conditional inequality:

P (C|D) ≥ Pb. It is necessary to find these alarm regions in order to design the alarm system. Alarm

design requires computation of the Type I/II error probabilities for various border probabilities (Pb).
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Type I/II error probabilities are the probabilities of false alarm and missed detection, respectively.

In alarm design, we want to find the value of Pb that provides the best tradeoff between Type I and

Type II errors, or a similar alarm system metric.

For complicated multi-dimensional events, it’s not feasible to obtain the exact alarm system

metrics by means of numerical integration. Instead, one may perform simulations to obtain an

estimate of the exact Type I/II error probabilities. These simulation-based statistics have well

known estimation error properties. They are obtained by running a Kalman predictor, and counting

the number of correct/false alarms and correct/missed detections, for a long enough time until

their relative frequencies converge to limiting probability values. However, with the aid of some

approximations, we can perform numerical integrations of complex integrals, and can avoid otherwise

often very time and computationally intensive simulation runs.

One might question the merit of using such an unavoidably costly and computationally

intensive technique to design an alarm system, when a simpler one might do. There are several dif-

ferent types of alarm systems, ranging in frequency of use and expense. At one end, we have alarm

systems that require little economic investment other than the accumulation of man-hours of expe-

riential knowledge. These systems, although quite inexpensive and often lacking in sophistication,

tend to be the most ubiquitous in engineering systems. For the most part, they tend to the job that

is required of them: to give alarm for prevention of catastrophic events. Here, false alarms would

cause loss of production and capital due to system downtime from the inevitable system shutdown as

a result of the alarm. However, missed detections may cause damage, complete system destruction

or loss of life, where the costs are immeasurable. Since the events that need to be predicted by these

more simple alarm systems are extremely critical, Type I errors (probability of false alarms) are

obviously much less costly than Type II errors (probability of missed detections). Therefore, simple

alarm systems are designed for Type II error avoidance. On the other end, engineering systems that

predict events of a less severe nature may require a more subtle balance between Type I and Type

II errors. In this case, more sophisticated alarm systems may be of interest.
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The following list provides a variety of alarm systems, ranging from the most simple one

to more sophisticated ones alluded to above.

Simple Alarm System Typically there is no cost for this type of alarm system, and it is based

upon the knowledge and experience of the users, i.e. heuristics. The basic idea is that certain

tolerances are chosen apriori, via trial and error, to provide a window of operation within

which the process should be constrained.

Predictive Alarm System An alarm system that uses some sort of predictive method is often

called a näıve alarm system [45, 69, 70]. Here, a predicted process value would trigger an alarm

if it exceeds some fixed, pre-selected alarm threshold. However, even though the predictor may

be optimal in the least-squares sense, the alarm system would not be optimal in the sense that

it triggers the fewest false alarms for a fixed detection probability.

Optimal Alarm Systems Described before, an optimal alarm system is derived based upon a

likelihood ratio criterion via the Neyman-Pearson lemma. The resulting optimal alarm system

requires the use of predictive techniques to elicit the fewest possible false alarms for a fixed

detection probability. As stated earlier, there are several approximations which may be used

in cases when computing the exact optimal alarm system is infeasible. These approximations

are listed below.

1) Two-Dimensional Alarm System Also called a semi-näıve alarm system in the litera-

ture [69, 70], it uses the idea of optimal alarm. However, the two-dimensional alarm region

is approximated with asymptotes to “rectangularize” it, making the region of integration

much easier to define.

2) Multiple Sub-Interval Alarm System We may also use the union of disjoint sub-intervals

to approximate the exact alarm region. This approximation was again a recommenda-

tion of Svensson [69]. Exact alarm regions often involve complicated multi-dimensional

events. Therefore, aggregating less complicated 2-dimensional alarm regions reduces the
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computational load and increases mathematical tractability. Each sub-interval can be

approximated with asymptotes, again making the regions of integration much easier to

define.

3) Multi-Dimensional Alarm System The exact alarm system metrics cannot feasibly be

obtained for complicated multi-dimensional events by means of numerical integration.

However, a newly proposed approximate alarm region of integration can be defined as

a tight bound on the exact region via the unions and/or intersections of planes. This

approximation forms a semi-infinite hyper-rectangular region in multi-dimensional space,

which approximates the region.

When Svensson first introduced examples for the practical application of optimal prediction

and optimal alarm design, one was a basic 2nd order model. However, its spectral content is quite

different than 2nd-order models based on complaint statistics described in Federspiel’s work, [19].

The latter model is the one of practical interest to us. Since the dynamics of Svensson’s 2nd-order

model are much faster, finding the exact Type I/II error probabilities for the exact alarm region

will take much less simulation time. Therefore, this model will be used as a baseline comparison

example. It will also serve as the primary example for developing all theory that follows, for operating

complaints only. The theory can easily be extended/generalized to the other cases of interest. The

other examples are provided in the following list:

1. Svensson’s 2nd-order model, fixed critical threshold, both arrival and operating complaints

2. Federspiel’s 2nd-order models, random threshold, operating complaints only

3. Federspiel’s 2nd-order models, random threshold, both arrival and operating complaints
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3.2 Theory

3.2.1 The Exact Alarm Condition

We know that the only way to obtain enough information for designing an optimal alarm

system and exact computation of Type I/II error probabilities is by simulating the exact conditions

for alarm. The condition for alarm, for operating complaints only, is based upon the null hypothesis

shown in Eqn. 3.1.

H0 : At least one complaint during normal building operating hours (3.1)

H0 : (X ∈ ΩCexact ⊂ Rm+1)

m + 1 = dimension of hypothesis-based event

m = number of steps in prediction window

ΩCexact = m+1-dimensional event region

X =




xk

xk+1

...

xk+m




Cexact = {X ∈ ΩCexact ⊂ Rm+1}

= ¬{xk < L, xk+1 < L, . . . , xj < L, . . . , xk+m < L} \ {xk > L}

=
not︷︸︸︷¬ {xk < L, xk+1 < L, . . . , xj < L, . . . , xk+m < L}︸ ︷︷ ︸

no complaints

take away︷︸︸︷
\ {xk > L}︸ ︷︷ ︸

arrival complaints

xj < L, ∀j ∈ {k + 2, . . . , k + m− 1}

L = Fixed critical threshold level

xk+i = Output and/or future values of a stationary Gaussian random sequence

In our specific case above, the exact condition for alarm results in the alarm condition
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inequality shown in Eqn. 3.2, via the Neyman-Pearson lemma [69, 70].

P (xk < L|D)− P (xk < L, xk+1 < L, . . . , xk+m < L|D) ≥ Pb (3.2)

D = {x0, . . . , xk}

Although we won’t cover the theoretical derivation for the case of both arrival and operating

complaints in detail here, note that the alarm condition for both arrival and operating complaints

is not too different than the one shown in Eqns. 3.1-3.2:

Cexact = {X ∈ ΩCexact ⊂ Rm+1}

= ¬{xk+d < L, xk+d+1 < L, . . . , xj+d < L, . . . , xk+m+d < L}

=
not︷︸︸︷¬ {xk+d < L, xk+d+1 < L, . . . , xj+d < L, . . . , xk+m+d < L}︸ ︷︷ ︸

no complaints

xj < L, ∀j ∈ {k + d + 2, . . . , k + d + m− 1}

where d = number of steps prior to the start of the beginning of the day

A similar alarm condition inequality results:

1− P (xk+d < L, xk+d+1 < L, . . . , xk+d+m < L|x0, . . . , xk) ≥ Pb

Let’s now return to the exact alarm condition for operating complaints only:

Cexact = {X ∈ ΩCexact ⊂ Rm+1} = ¬{xk < L, xk+1 < L, . . . , xk+m < L} \ {xk > L}

The exact alarm condition is as follows:
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Aexact
4
= {X̂ ∈ ΩAexact ⊂ Rm+1}

= {X̂ : P (Cexact|D) ≥ Pb}

= {X̂ : P (xk < L|D)− P (xk < L, xk+1 < L, . . . , xk+m < L|D) ≥ Pb}

where:

X =




xk

xk+1

...

xk+m




, X̂ = E[X|D] =




x̂k|k

x̂k+1|k
...

x̂k+m|k




and:

D = {x0, . . . , xk}

Hence it is easy to write the formulae for correct alarms/detections:

Let x =



X

X̂


 (3.3)

Correct Alarm: P (Cexact|Aexact) =
P (Cexact, Aexact)

P (Aexact)
(3.4)

=

∫
ΩCexact

∫
ΩAexact

N (x; µx,Σx) dx
∫
ΩAexact

N (X̂;µX̂, ΣX̂) dX̂

Correct Detection: P (Aexact|Cexact) =
P (Cexact, Aexact)

P (Cexact)
(3.5)

=

∫
ΩCexact

∫
ΩAexact

N (x; µx,Σx) dx
∫
ΩCexact

N (X;µX, ΣX) dX

We know that computing these integrals, specifically, the alarm regions, Aexact, is an

intractable problem. Therefore we must simulate to obtain estimates of the Type I/II error prob-

abilities, in lieu of storing points along the border of the alarm region in an m-dimensional grid.
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But instead of using the “counting” method via simulation described earlier, we can compute their

tractable, and much less computationally intensive approximations.

3.2.2 Kalman Filtering and Prediction

Before attempting to explain the approximation methods, it’s necessary to address some

preliminaries – the basic mathematical paradigms that we’ll use. As such, let’s assume that the

stationary, Gaussian, random process of interest is characterized in state-space as a typical linear

system of the form

qk+1 = Aqk + Bnk (3.6)

xk = Cqk + vk

where qk is the unobserved state of the process with measured output xk. Apriori statistics

for the input and measurement noise sequences, nk and vk, also need to be defined. Their covariances

are

Q
4
= E[nknT

k ] = σ2
n

R
4
= E[vkvT

k ]

We also assume nk and vk are zero-mean Gaussian white noise sequences without loss of generality,

such that nk ∼ N (0, Q) and vk ∼ N (0, R). At this point we should introduce the propagation of

the unconditional covariance matrix.

Pk+1 = APkAT + BQBT (3.7)

= APkAT + Bσ2
nBT (3.8)

where
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Pk
4
= E[qkq

T
k ]

There is also an algebraic equivalent to this propagation equation.

PL
ss = APL

ssA
T + BQBT = APL

ssA
T + Bσ2

nBT

where PL
ss Â 0 is the solution to this discrete algebraic Lyapunov equation. If we take the

conditional expectation of Eqn. 3.6 with respect to the data, D = {x0, . . . , xk}, we obtain:

q̂k+1|k = Aq̂k|k (3.9)

where

q̂k|k
4
= E[qk|x0, . . . , xk]

This represents the time update step of the recursive Kalman filtering equations. The

measurement update step is given by

q̂k+1|k+1 = q̂k+1|k + Pk+1|kC
T (CPk+1|kC

T + R)−1(xk+1 −Cq̂k+1|k) (3.10)

We also need to define the conditional covariance propagation time and measurement up-

dates in Eqns. 3.11-3.12, respectively.

Pk+1|k = APk|kA
T + BQBT (3.11)

Pk+1|k+1 = Pk+1|k −Pk+1|kC
T (CPk+1|kC

T + R)−1CPk+1|k (3.12)

where

Pk|k
4
= E[(qk − q̂k|k)(qk − q̂k|k)T |x0, . . . , xk]

Combining the two equations, we get the following:
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Pk+1|k = APk|k−1A
T −APk|k−1C

T (CPk|k−1C
T + R)−1CPk|k−1A

T + BQBT (3.13)

The stationary version of Eqn. 3.13 gives us the solution to the discrete algebraic Riccati

equation, as follows:

PR
ss = APR

ssA
T −APR

ssC
T (CPR

ssC
T + R)−1CPR

ssA
T + BQBT (3.14)

However, we’re interested in the updated aposteriori steady-state covariance matrix, which

is the stationary version of Eqn. 3.12 given by:

P̂
R

ss = PR
ss −PR

ssC
T (CPR

ssC
T + R)−1CPR

ss (3.15)

In Eqn. 3.15, it is immediately apparent that P̂
R

ss ≺ PR
ss in the quadratic sense. There are

some other important Kalman filter properties which give us more definiteness bounds.

Theorem 1 Suppose (A,C) is observable, then Pk+1|k is bounded, i.e. ∃M : Pk+1|k ≺M.

Theorem 2 Suppose (A,C) is observable, then Pk+1|k → PR
ss, ∀ P0|−1.

Theorem 3 Suppose (A,B) is controllable, then the Discrete Algebraic Riccati Equation (DARE)

has a unique solution, PR
ss Â 0.

Theorem 4 Suppose (A,B) is controllable and (A,C) is observable, then ∃ a unique PR
ss Â 0 which

solves the DARE.

Therefore, if (A,B) is controllable and (A,C) is observable, then the solution to the DARE

will be positive definite, and PR
ss Â 0. It may also be shown that PL

ss − P̂
R

ss Â 0, which will be

needed for future analysis.

P̂
R

ss can be used in place of Pk|k, and PL
ss can be used in place of Pk, because that’s what

they will converge to anyway. Since our process is assumed to be stationary, and if we initialize
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our Kalman filter to steady-state conditions, there will be no transient convergence period. Because

we’re primarily concerned with prediction for the main purposes of this chapter, we will need to

compute variances and covariances of the form

Vk+i|k
4
= V ar(xk+i|x0, . . . , xk)

cov(xk+i, xk+j |x0, . . . , xk)

where i, j are prediction window indices. It can be shown that Vk+i|k and its covariance counterparts

are functions of Pk|k and Pk, and therefore P̂
R

ss, and PL
ss, respectively. As a result, they can be

expressed as being independent of the time index k, although they cannot be expressed as being

independent of the prediction window indices i, j. Similarly, we will need to compute the predicted

process value x̂k+i|k.

x̂k+i|k
4
= E[xk+i|x0, . . . , xk] (3.16)

= CE[qk+i|x0, . . . , xk] (3.17)

= Cq̂k+i|k (3.18)

= C(Aiq̂k|k + (In −Ai)(In −A)−1BµTB ) (3.19)

where µTB

4
= E[xk] (3.20)

Obviously, x̂k+i|k can be expressed as a function of q̂k|k, but unlike Vk+i|k, it will fluctuate

as new measurements are made. This is apparent due to Eqn. 3.10, which is directly dependent

upon measurements xk+1.

3.2.3 Approximations for the Exact Alarm Region

Two-Dimensional Alarm System Approximation

The first approximation for the exact alarm region given by Aexact = {X̂ : P (xk < L|D)−

P (xk < L, xk+1 < L, . . . , xk+m < L|D) ≥ Pb} is a single interval two-dimensional approximation.
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In this case we only consider two time slices, {i = 0, i = m}, which span the entire time interval

being considered. The process value is below the critical threshold at the very beginning of the

interval, and above it at the very end. The exact null hypothesis captures at least one complaint or

upcrossing, where the process itself is not restricted to being above or below the critical threshold at

the end of the interval. Therefore, this approximation will miss half of the upcrossings/complaints

caught by the exact condition. However, using it will greatly reduce computation time, and the

answer can be achieved via numerical integration, without the use of simulation.

The approximation is shown in Eqns. 3.21-3.25. By using it, not only do we reduce the

dimension of the alarm region from m + 1 to 2, shown in the first step via Eqn. 3.21, but a

“rectangularized” two-dimensional approximation is used for further ease of computation. Recall

that a two-dimensional alarm system is one that actually uses the idea of optimal alarm. The exact

2D alarm region is approximated with asymptotes, making the revised region of integration much

easier to parameterize. The “rectangularization” is apparent in Fig. 3.1.

P (xk < L, xk+m > L|x0, . . . , xk) ≥ Pb (3.21)

m 2D approximation

x̂k|k < L−
√

Vk|kΦ−1(Pb)
⋂

x̂k+m|k > L +
√

Vk+m|kΦ−1(Pb) (3.22)

where

Φ−1(·) = Inverse cumulative normal standard distribution function (3.23)

Vk+i|k
4
= V ar(xk+i|x0, . . . , xk) (3.24)

= C(Ai(P̂
R

ss −PL
ss)(A

T )i + PL
ss)C

T + R (3.25)

Notice that there are several two-dimensional alarm regions shown in Fig. 3.1, for values of

Pb ranging from 0.1 to 0.9, in gradations of 0.1, all for m = 5. Each of the regions is convex, above
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Figure 3.1: Approximation to the 2D Alarm Region for Pb = 0.99

and to the left of which is considered the alarm region. However, performing an integration over

this two-dimensional alarm region requires storing the contour points along its border, and often

consumes quite a bit more compute cycles than the respective “rectangularized” 2D alarm region.

These contour plots can also be expressed approximately as a parametric function of x̂k|k and x̂k+i|k.

However, this approximation is best when the correlation between x̂k|k and x̂k+i|k nears 1. Also,

using this function to perform an integration over the two-dimensional alarm region will still be

quite a bit more computationally demanding than using the respective “rectangularized” 2D alarm

region. For the specific case of Pb = 0.99, we can see the asymptotes in Fig. 3.1 that define the

approximation, which bound the two-dimensional alarm region. Integration over this region is much

easier, and the magnitude of the error introduced by this additional approximation will not be on

par with the approximation of the “m + 1”-dimensional exact region with a reduced 2-dimensional

region.
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Multiple Sub-Interval Alarm System Approximation

To improve upon the approximation introduced in the previous section, and “catch” more

of the cases missed by the single two-dimensional interval, we can split the interval into Ns disjoint

two-dimensional subintervals, and construct alarm systems for each subinterval. Here we’d like

to compute the relevant aggregate Type I/II error probabilities for the entire interval in question,

by taking the union of the alarm systems corresponding to each subinterval. Obtaining the two-

dimensional approximate alarm regions for each subinterval is easy, and is based upon the same logic

in Eqns. 3.21-3.25. In order to determine the aggregate Type I/II error probabilities, we use Eqns.

3.30-3.33. But first the alarm sub-interval approximation definitions provided in Eqns. 3.26-3.29

must be made.

First, recall:

Cexact = ¬{xk < L, xk+1 < L, . . . , xk+m < L} \ {xk > L} (3.26)

Alarm sub-interval approximation:

Ai = {x̂k+si|k < Xsi , x̂k+si+1|k > Ysi+1} (3.27)

Xsi = L−
√

Vk+si|kΦ−1(Pb) (3.28)

Ysi+1 = L +
√

Vk+si+1|kΦ−1(Pb) (3.29)

0 ≤ si, si+1 ≤ m ⇔ indices corresponding to endpoints of subinterval i

Formulae for correct/false alarms and correct/missed detections can be developed, as shown

in Eqns. 3.30-3.33.
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Correct Alarm: P (Cexact|
⋃

i

Ai) =
P (Cexact,

⋃
i Ai)

P (
⋃

i Ai)
(3.30)

Correct Detection: P (
⋃

i

Ai|Cexact) =
P (Cexact,

⋃
i Ai)

P (Cexact)
(3.31)

False Alarm: P (C
′
exact|

⋃

i

Ai) =
P (C

′
exact,

⋃
i Ai)

P (
⋃

i Ai)
(3.32)

= 1− P (Cexact|
⋃

i

Ai)

Missed Detection: P ((
⋃

i

Ai)
′ |Cexact) =

P (Cexact, (
⋃

i Ai)
′
)

P (Cexact)
(3.33)

= 1− P (
⋃

i

Ai|Cexact)

In order to compute the deceivingly simple-looking formulae in Eqns. 3.30-3.33, we need

to come up with more detailed equations for P (
⋃

i Ai), P (Cexact,
⋃

i Ai), and P (Cexact).
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P (Cexact) = P (xk < L)− P (xk < L, . . . , xk+m < L) (3.34)

=
1√
2π

∫ L

−∞
e
− 1

2
(xk−Cµq)2

CPL
ssCT +R dxk −

∫ L

−∞
· · ·

∫ L

−∞︸ ︷︷ ︸
m+1

N (x; µx, Σx) dx

= Φ


 L−Cµq√

CPL
ssC

T + R


−

∫ L

−∞
· · ·

∫ L

−∞︸ ︷︷ ︸
m+1

N (x; µx,Σx) dx

µx =




Cµq

...

C(Aiµq + (In −Ai)(In −A)−1BµTB
)

...

C(Amµq + (In −Am)(In −A)−1BµTB
)




=




Cµq

...

Cµq

...

Cµq




Σx =




CPL
ssC

T + R · · · CPL
ss(A

T )iCT · · · CPL
ss(A

T )mCT

...
. . .

...

CAiPL
ssC

T · · · CPL
ssC

T + R · · · Xss

...
. . .

...

CAmPL
ssC

T · · · XT
ss · · · CPL

ssC
T + R




Xss = CLssCT (3.35)

Lss = ALssAT + BQBT (AT )m−i where i < m (3.36)

x =




xk

...

xk+m



∈ Rm+1 (3.37)

µq
4
= E[qk] (3.38)

where N (x;µ, Σ) is the standard multivariate normal probability distribution of x with mean µx,

and covariance matrix Σx. Note that Xss is the cross term of covariance matrix Σx corresponding

to the ith row and (m+1)st column. However, the general formula for cross terms is CLssCT , where
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i < j for the ith row and the jth column, and Lss = ALssAT + BQBT (AT )j−i.

Let Aapprox
4
=

⋃Ns

i=1 Ai denote the alarm condition for the sub-interval approximation, and

a candidate region of integration. Note that the integrands of Eqns. 3.39 and 3.41 cannot easily be

integrated over this region of integration. Since these integrals are not well-defined, we must use the

inclusion/exclusion rule to develop more extensive formulae for P (
⋃

i Ai) and P (Cexact,
⋃

i Ai).

However, we know that often an alternative to using the inlcusion/exclusion rule, which

has O(2Ns) terms, is to compute its complement instead, i.e. P (
⋃

i Ai) = 1−P (
⋂

i A′i). This is often

a much less computationally intensive formula to work with, and less numerical integration error ac-

cumulates, when considering the number of terms involved. Recall Ai = {x̂k+si|k < Xsi
, x̂k+si+1|k >

Ysi+1}. Let’s redefine Ai
4
= Xi

⋂
Yi, where Xi

4
= {x̂k+si|k < Xsi}, and Yi

4
= {x̂k+si+1|k > Ysi+1}. We

know from DeMorgan’s theorem that A′i = (Xi

⋂
Yi)′ = X ′

i

⋃
Y ′

i . Therefore,
⋂

i A′i =
⋂

i{X ′
i

⋃
Y ′

i }.

This has O(Ns) terms, which is less than O(2Ns) terms, but the probability of this logical expression

cannot be computed directly. It will need to be manipulated further in order to feasibly compute

the probability, as follows:

Ns⋂

i=1

A′i =
Ns⋂

i=1

X ′
i

⋃
Y ′

i

=
2Ns⋃

i=1

Mi

⋂
Ni

where (Mi, Ni) ∈ {(Xi, Yi), (Xi, Y
′
i ), (X ′

i, Yi), (X ′
i, Y

′
i )}

So, we now compute 1−P (
⋂Ns

i=1 A′i) = 1−P (
⋃2Ns

i=1 Mi

⋂
Ni), which requires O(22Ns ) terms

by using the inclusion/exclusion rule. But this is much more than the O(2Ns) terms required by

computing P (
⋃

i Ai) directly. Therefore, we will compute P (
⋃

i Ai) in lieu of 1 − P (
⋂

i A′i), for

multiple sub-interval probability computations. We continue, now with Eqns. 3.39 and 3.41, by

using the inclusion/exclusion rule:
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P (
Ns⋃

i=1

Ai) =
∫

ΩAapprox

N (X̂;µX̂,ΣX̂) dX̂ (3.39)

=
Ns∑

i=1

P (Ai)−
∑

1≤i<j≤Ns

P (Ai, Aj) (3.40)

+
∑

1≤i<j<k≤Ns

P (Ai, Aj , Ak)− . . . + (−1)Ns−1P (
Ns⋂

i=1

Ai)

Let x =



X

X̂




Let xsub =




xk

X̂




P (Cexact,

Ns⋃

i=1

Ai) =
∫ L

−∞

∫

ΩAapprox

N (xsub; µxsub
, Σxsub

) dxsub (3.41)

−
∫ L

−∞
· · ·

∫ L

−∞︸ ︷︷ ︸
m+1

∫

ΩAapprox

N (x; µx,Σx) dx

=
Ns∑

i=1

P (Cexact, Ai)−
∑

1≤i<j≤Ns

P (Cexact, Ai, Aj) (3.42)

+
∑

1≤i<j<k≤Ns

P (Cexact, Ai, Aj , Ak)− . . . + (−1)Ns−1P (Cexact,

Ns⋂

i=1

Ai)

The region of integration, Aapprox, has the following representation:
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Aapprox
4
= {X̂ ∈ ΩAapprox ⊂ RNs+1} (3.43)

= {X̂ :
Ns⋃

i=1

Ai}

Let Ci = {xk+si
< L, xk+si+1 > L}

⇒ Aapprox = {X̂ :
Ns⋃

i=1

{P (Ci|D) ≥ Pb}}

= {X̂ :
Ns⋃

i=1

{P (xk+si
< L, xk+si+1 > L|x0, . . . , xk) ≥ Pb}}

Subinterval Approximation
= {X̂ :

Ns⋃

i=1

{x̂k+si|k < Xsi
, x̂k+si+1|k > Ysi+1}}

Recall Xsi = L−
√

Vk+si|kΦ−1(Pb)

and Ysi+1 = L +
√

Vk+si+1|kΦ−1(Pb)

The algorithm used to form different combinations of Ai, i ∈ {1 . . .m} for use in Eqns.

3.40 and 3.42 is as follows:

1. Form the set A = {A1, A2, . . . , Ai, . . . , Am}.

2. Extract vacuous and singleton elements of its powerset, 2A.

3. The remaining non-vacuous and non-singleton elements represent the pairs, triples, etc., nec-

essary to compute Eqns. 3.40 and 3.42.

Examples of some of the probabilities needed to compute P (
⋃

i Ai) are as follows:
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P (Ai) = P (x̂k+si|k < Xsi , x̂k+si+1|k > Ysi+1) (3.44)

=
∫ Xsi

−∞

∫ ∞

Ysi+1

N (x;µx, Σx) dx (3.45)

µx =




C(Asiµq + (In −Asi)(In −A)−1BµTB
)

C(Asi+1µq + (In −Asi+1)(In −A)−1BµTB
)


 =




Cµq

Cµq


 (3.46)

Σx =




CAsi

CAsi+1


 (PL

ss − P̂
R

ss)




CAsi

CAsi+1




T

(3.47)

x =




x̂k+si|k

x̂k+si+1|k


 ∈ R2 (3.48)

For the last term in Eqn. 3.40, in which the maximum number of alarm sub-intervals are

used (Ns = m), and are all adjacent, the formula is shown below:
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P (A1, A2, . . . , Am) = P (x̂k+s1|k < Xs1 , x̂k+s2|k > Ys2 , (3.49)

x̂k+s2|k < Xs2 , x̂k+s3|k > Ys3 , . . . ,

x̂k+sm|k < Xsm
, x̂k+sm+1|k > Ysm+1)

=
∫ Xs1

−∞

∫ Xs2

Ys2

∫ Xs3

Ys3

· · ·
∫ Xsm

Ysm

∫ ∞

Ysm+1

N (x;µx, Σx) dx

µx =




C(As1µq + (In −As1)(In −A)−1BµTB
)

...

C(Asm+1µq + (In −Asm+1)(In −A)−1BµTB
)




=




Cµq

...

Cµq




Σx =




CAs1

...

CAsm+1




(PL
ss − P̂

R

ss)




CAs1

...

CAsm+1




T

x =




x̂k+s1|k
...

x̂k+sm+1|k



∈ R|A|+1 ≡ Rm+1 (3.50)

Or for the last term in Eqn. 3.40, in which less than the maximum number of sub-intervals

are used (Ns = j < m or simply j < m), yet are still all adjacent, the formula is shown below:
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Let Asub = {A1, A2, . . . , Aj} ⊂ A

P (A1, . . . , Aj) = P (x̂k+s1|k < Xs1 , x̂k+s2|k > Ys2 , . . . (3.51)

x̂k+sj |k < Xsj
, x̂k+sj+1|k > Ysj+1)

=
∫ Xs1

−∞

∫ Xs2

Ys2

· · ·
∫ Xsj

Ysj

∫ ∞

Ysj+1

N (x;µx, Σx) dx

µx =




C(As1µq + (In −As1)(In −A)−1BµTB
)

...

C(Asj+1µq + (In −Asj+1)(In −A)−1BµTB
)




=




Cµq

...

Cµq




Σx =




CAs1

...

CAsj+1




(PL
ss − P̂

R

ss)




CAs1

...

CAsj+1




T

x =




x̂k+s1|k
...

x̂k+sj+1|k



∈ R|Asub|+1 ≡ Rj+1 (3.52)

Mathematical Considerations

There are several important things to notice in Eqns. 3.44-3.52. The first is the fact that a

lower limit need not be less than an upper limit for any component of a definite integral, i.e. there

is no restriction which yields Ysi < Xsi . In fact, it is quite possible that Ysi ≥ Xsi . When this is

the case, mathematically computing the integrals shown in Eqns. 3.44-3.52 may result in negative

numbers. However, from basic probability theory we know that P (·) ≥ 0, and P (∅) = 0. Let’s apply

these ideas to obtain accurate answers for Eqns. 3.44-3.52. We know that ∀i : Ysi < Xsi , P (·) > 0,

but for the specific case when ∃i : Ysi ≥ Xsi , the following is true:
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P (. . . , x̂k+si|k > Ysi , x̂k+si|k < Xsi , . . .) = P (. . . ,Ysi < x̂k+si|k < Xsi , . . .)

= P (∅)

= 0

Recall |A| = m and |Asub| = j represent the number of sub-intervals in each respective set.

The dimension of the states in Eqns. 3.50, 3.52 are m + 1 and j + 1, which are 1 greater than the

dimensions of |A| = m, and |Asub| = j, respectively. This is due to the fact that all sub-intervals in

question are adjacent, and there are 2 endpoints for each sub-interval. It is important to bookkeep the

dimensions of these sets to ensure that all covariance matrices are positive (semi-)definite. Recall that

(A,B) controllable and (A,C) observable were necessary and sufficient conditions for the solution

to the DARE to be positive definite. Therefore, given (A,B) controllable and (A,C) observable,

PR
ss Â 0. It may also be shown from this that PL

ss − P̂
R

ss Â 0.

In general, from Kalman filter theory, we know that measurements decrease uncertainty.

The “norm,” or amplifying power of the covariance matrices is related to this uncertainty, because

they represent prediction/estimation error. Therefore, we can set up a chain of corresponding defi-

niteness relations, because definiteness can be mathematically related to the norm. The covariance

which is the “least positive definite” (or “most negative definite”) in some sense is the one that is

the least “uncertain”, and also the one that conditions on the greatest number of measurements.

The steady-state aposteriori covariance matrix P̂
R

ss is based upon measurements up to time

k + 1, as in Eqn. 3.12. The steady-state apriori covariance matrix PR
ss is based upon measurements

up to time k, as in Eqn. 3.11. The steady-state unconditional covariance matrix PL
ss is based upon no

measurements at all, as in Eqn. 3.7. As a result, the covariance matrix with the “most information”

is at the bottom of the chain of negative definiteness relations. This is due to the fact that its gain

will be the least in norm, since it has the least uncertainty (lowest estimation error) . This would

be the steady-state aposteriori covariance matrix, P̂
R

ss, since it conditions all the way out to k + 1.
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The next would be the steady-state apriori covariance matrix, PR
ss, since it only conditions out to

k. The final covariance matrix in the chain of negative definiteness relations would be PL
ss, since it

is based upon no measurements at all. To summarize we get the following: 0 ≺ P̂
R

ss ≺ PR
ss ≺ PL

ss.

Mathematically, it follows that PL
ss Â PR

ss Â P̂
R

ss Â 0, and that PL
ss −PR

ss Â 0, PR
ss − P̂

R

ss Â 0, and

PL
ss− P̂

R

ss Â 0. These are standard results from linear algebra, and the latter, PL
ss− P̂

R

ss Â 0 is now

needed.

All of the covariance matrices in the formulae above have the form LT ML. We now

know that PL
ss − P̂

R

ss Â 0. Therefore, a standard result from linear algebra tells us that M =

PL
ss − P̂

R

ss Â 0 ⇔ LT ML º 0, or in the most restrictive case of P (A1, A2, . . . , Am), M =

PL
ss − P̂

R

ss Â 0 ⇔ LT ML Â 0 iff rank(L) = |A| = m + 1. The (A,C) observability condition

required to show that PL
ss − P̂

R

ss Â 0 can also be written as a rank condition on the observabil-

ity matrix, rank(
[

C CA . . . CAn−1

]T

) = n, where n = rank(A). Notice that the “LT ”

portion of the covariance matrix in Eqn. 3.50 resembles the observability matrix. This is the

case in which the maximum number of alarm sub-intervals are used (Ns = m), and are all adja-

cent. Hence all {s1 . . . sm+1} sub-interval indices are actually equivalent to {0 . . . m}, and instead of

L =
[

CAs1 CAs2 . . . CAsm+1

]
, we have L =

[
C CA . . . CAm

]
.

To obtain a positive definite covariance matrix, we require rank(L) = |A| = m+1 because

the most restrictive case of P (A1, A2, . . . , Am) always needs to be computed. It is the last term

in Eqn. 3.40, and needed for accurate computation of P (
⋃m

i=1 Ai) when being computed for the

maximum number of sub-intervals. The only way that this is possible is if rank(A) = n = rank(L) =

m + 1. This means that the order of the linear system in question must have m + 1 states, or the

prediction window must be limited to n−1 time slices. Therefore, we have a necessary and sufficient

condition for accurate computation of P (
⋃m

i=1 Ai), assuming that all covariance matrices need to be

positive definite. However, the positive semi-definite condition LT (PL
ss − P̂

R

ss)L º 0 always holds,

for any case from the least to the most restrictive. The multivariate normal probability integrals are

computed by using a Monte Carlo technique developed by Genz [27] (i.e. as shown in Eqns. 3.49,
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3.51). Monte Carlo techniques are based on sampling, therefore a certain pre-selected number of

sample points are used to obtain reasonable accuracy for the integration result. Using this technique

allows us to compute probabilities of a degenerate Gaussian random vector having a singular, positive

semi-definite covariance matrix.

As might be expected, similar formulae can be derived for intermediate terms with non-

adjacent sub-intervals in the inclusion/exclusion formula for P (
⋃

i Ai). Furthermore, formulae to

compute the terms in the inclusion/exclusion formula for the joint probability P (Cexact,
⋃

i Ai) can

be found as well. The formulae given thus far should be sufficient to extrapolate these equations

from the systematic framework provided.

Multi-Dimensional Alarm System Approximation

The final method introduced in this chapter is meant to provide the best possible approx-

imation to the exact alarm region, given by Aexact = {X̂ : P (xk < L|D) − P (xk < L, xk+1 <

L, . . . , xk+m < L|D) ≥ Pb}. We know that the exact alarm region does not serve as a well-defined

region of integration. Therefore, the exact alarm system metrics cannot feasibly be obtained for

complicated multi-dimensional events by means of numerical integration. To illustrate this fact,

Fig. 3.2 shows the exact alarm region when m = 3 and the multivariate Gaussian integrand is 4

dimensional. The alarm region is above the surface shown.

It is apparent from the figure that the surface of the exact alarm region boundary is quite

complex and does not serve as a feasible, parameterizable integration region. However, an approxi-

mate volume can be defined as a tight bound on the exact region via the unions and/or intersections

of planes. This approximation forms a semi-infinite hyper-rectangular region in multi-dimensional

space. For operating complaints only, the region of integration, Aapprox, has the following represen-

tation:
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Figure 3.2: Exact Alarm Region for m = 3

Aexact
4
= {X̂ ∈ ΩAexact ⊂ Rm+1}

= {X̂ : P (xk < L|x0, . . . , xk)−

P (xk < L, . . . , xk+m < L|x0, . . . , xk) ≥ Pb}

m Multi-dimensional approximation

Aapprox
4
= {X̂ ∈ ΩAapprox ⊂ Rm+1}

= {X̂ : A0

⋂ [
m⋃

i=1

Ai

]
} (3.53)

where A0
4
= x̂k|k ≤

X0︷ ︸︸ ︷
L−

√
Vk|kΦ−1(Pb)

Ai
4
= x̂k+i|k ≥ L +

√
Vk+i|kΦ−1(Pb)

︸ ︷︷ ︸
Yi

∀i ∈ 1, . . . , m

Or, Aapprox = {X̂ : x̂k|k ≤ L−
√

Vk|kΦ−1(Pb)
⋂ [

m⋃

i=1

x̂k+i|k ≥ L +
√

Vk+i|kΦ−1(Pb)

]
}
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For both arrival and operating complaints, the region of integration, Aapprox, has the

following representation:

Aexact
4
= {X̂ ∈ ΩAexact ⊂ Rm+1}

= {X̂ : 1− P (xk+d < L, . . . , xk+d+m < L|x0, . . . , xk) ≥ Pb}

m Multi-dimensional approximation

Aapprox
4
= {X̂ ∈ ΩAapprox

⊂ Rm+1}

= {X̂ :
m⋃

i=0

Ai}

= {X̂ :
m⋃

i=0

x̂k+d+i|k ≥ L +
√

Vk+d+i|kΦ−1(Pb)}

Hence, Eqn. 3.53 denotes the approximate “operating complaints only” alarm condition

for the multi-dimensional approximation, and a candidate region of integration. The formulae for

correct/false alarms and correct/missed detections can be developed, as shown in Eqns. 3.54-3.57.

Correct Alarm: P (Cexact|Aapprox) =
P (Cexact, Aapprox)

P (Aapprox)
(3.54)

Correct Detection: P (Aapprox|Cexact) =
P (Cexact, Aapprox)

P (Cexact)
(3.55)

False Alarm: P (C
′
exact|Aapprox) =

P (C
′
exact, Aapprox)
P (Aapprox)

(3.56)

= 1− P (Cexact|Aapprox)

Missed Detection: P ((Aapprox)
′ |Cexact) =

P (Cexact, (Aapprox)
′
)

P (Cexact)
(3.57)

= 1− P (Aapprox|Cexact)

In order to compute the formulae in Eqns. 3.54-3.57, we need to come up with more detailed

equations for P (Aapprox) = P (A0,
⋃m

i=1 Ai) and P (Cexact, Aapprox) = P (Cexact, A0,
⋃m

i=1 Ai). We

may use the inclusion/exclusion rule to develop extensive formulae for P (Aapprox) and P (Cexact, Aapprox),

shown in Eqns. 3.61-3.65. However, recall that an alternative to using the inlcusion/exclusion rule,
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which has O(2m) terms, is to compute its complement instead, i.e. P (
⋃

i Ai) = 1 − P (
⋂

i A′i).

This method may turn out to be more useful than for sub-intervals, because of the way that

the alarm events are defined for the multi-dimensional method. Recall the definitions are based

upon single time slices as follows: A0 = {x̂k|k ≤ L − √
Vk|kΦ−1(Pb)}, and Ai = {x̂k+i|k ≥

L +
√

Vk+i|kΦ−1(Pb)}, ∀i ∈ 1, . . . ,m. So, we now may compute P (A0) − P (A0,
⋂m

i=1 A′i) in lieu

of P (A0,
⋃m

i=1 Ai), which only requires O(m) terms in lieu of the O(2m) terms needed by the in-

clusion/exclusion rule. A more detailed formula for P (A0) − P (A0,
⋂m

i=1 A′i) is provided in Eqn.

3.58.
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P (Aapprox) = P (A0)− P (A0,

m⋂

i=1

Ai)

= P (x̂k|k < X0)− P (x̂k|k < X0, x̂k+1|k < Y1, . . . , x̂k+m|k < Ym) (3.58)

=
1√
2π

∫ X0

−∞
e
− 1

2

(x̂k|k−Cµq)2

C(PL
ss−P̂R

ss)CT dx̂k|k −
∫ X0

−∞

∫ Y1

−∞
· · ·

∫ Ym

−∞
N (x;µx, Σx) dx

= Φ


 X0 −Cµq√

C(PL
ss − P̂

R

ss)C
T


−

∫ X0

−∞

∫ Y1

−∞
· · ·

∫ Ym

−∞
N (x; µx, Σx)

µx =




Cµq

CAµq + BµTB

...

C(Amµq + (In −Am)(In −A)−1BµTB
)




=




Cµq

Cµq

...

Cµq




Σx =




C

CA

...

CAm




(PL
ss − P̂

R

ss)




C

CA

...

CAm




T

x =




x̂k|k

x̂k+1|k
...

x̂k+m|k




∈ Rm+1

Again, similar formulae may be derived for P (Cexact,
⋃

i Ai), and for the other cases of

interest (both arrival and operating complaints, etc.). However, there may still be instances in which

using the inclusion/exclusion rule provides greater accuracy for a smaller number of Monte Carlo

integration sample points. This will be addressed further in the discussion section. Therefore we

continue now with Eqns. 3.61 and 3.65, illustrating the formulae required for the inclusion/exclusion

rule.
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P (Aapprox) = P (A0,

m⋃

i=1

Ai) (3.59)

= P (A0

⋂ [
m⋃

i=1

Ai

]
) (3.60)

=
∫

ΩAapprox

N (X̂;µX̂,ΣX̂) dX̂ (3.61)

=
m∑

i=1

P (A0, Ai)−
∑

1≤i<j≤m

P (A0, Ai, Aj) (3.62)

+
∑

1≤i<j<k≤m

P (A0, Ai, Aj , Ak)− . . . + (−1)m−1P (
m⋂

i=0

Ai)

Let x =



X

X̂




Let xsub =




xk

X̂




P (Cexact, Aapprox) = P (Cexact, A0,

m⋃

i=1

Ai) (3.63)

=
∫ L

−∞

∫

ΩAapprox

N (xsub; µxsub
, Σxsub

) dxsub (3.64)

−
∫ L

−∞
· · ·

∫ L

−∞︸ ︷︷ ︸
m+1

∫

ΩAapprox

N (x; µx,Σx) dx

=
m∑

i=1

P (Cexact, A0, Ai)−
∑

1≤i<j≤m

P (Cexact, A0, Ai, Aj) (3.65)

+
∑

1≤i<j<k≤m

P (Cexact, A0, Ai, Aj , Ak)− . . . + (−1)m−1P (Cexact,

m⋂

i=0

Ai)

Examples of some of the probabilities needed to compute P (Aapprox) = P (A0,
⋃m

i=1 Ai) are

as follows:
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P (A0, Ai) = P (x̂k|k < X0, x̂k+i|k > Yi) (3.66)

=
∫ X0

−∞

∫ ∞

Yi

N (x; µx, Σx) dx (3.67)

µx =




Cµq

C(Aiµq + (In −Ai)(In −A)−1BµTB
)


 =




Cµq

Cµq


 (3.68)

Σx =




C

CAi


 (PL

ss − P̂
R

ss)




C

CAi




T

(3.69)

x =




x̂k|k

x̂k+i|k


 ∈ R2 (3.70)

For the second term in Eqn. 3.62, the formula is shown below:

P (A0, Ai, Aj) = P (x̂k|k < X0, x̂k+i|k > Yi, x̂k+j|k > Yj) (3.71)

=
∫ X0

−∞

∫ ∞

Yi

∫ ∞

Yj

N (x;µx, Σx) dx (3.72)

µx =




Cµq

C(Aiµq + (In −Ai)(In −A)−1BµTB )

C(Ajµq + (In −Aj)(In −A)−1BµTB )




=




Cµq

Cµq

Cµq




(3.73)

Σx =




C

CAi

CAj




(PL
ss − P̂

R

ss)




C

CAi

CAj




T

(3.74)

x =




x̂k|k

x̂k+i|k

x̂k+j|k



∈ R3 (3.75)

For the last term in Eqn. 3.62, the formula is shown below:
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P (
m⋂

i=0

Ai) = P (x̂k|k < X0, x̂k+1|k > Y1, . . . , x̂k+m|k > Ym) (3.76)

=
∫ X0

−∞

∫ ∞

Y1

· · ·
∫ ∞

Ym

N (x; µx,Σx) dx

µx =




Cµq

CAµq + BµTB

...

C(Amµq + (In −Am)(In −A)−1BµTB )




=




Cµq

Cµq

...

Cµq




(3.77)

Σx =




C

CA

...

CAm




(PL
ss − P̂

R

ss)




C

CA

...

CAm




T

(3.78)

x =




x̂k|k

x̂k+1|k
...

x̂k+m|k




∈ Rm+1 (3.79)

As before with the sub-interval method, recall that PL
ss − P̂

R

ss Â 0. Therefore, PL
ss −

P̂
R

ss Â 0 ⇔ LT ML º 0, where L =
[

C CA · · · CAm

]
in the most restrictive case.

Again, formulae to compute the terms in the inclusion/exclusion formula for the joint probabil-

ity P (Cexact, A0,
⋃m

i=1 Ai) can be found by using the systematic framework provided.

3.3 Example Details

3.3.1 Examples 1 and 2

The first pair of examples to test the theory presented in the previous section is Svensson’s

2nd-order model, with a fixed critical threshold. Recall the basic state-space model from Eqn. 3.6:
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qk+1 = Aqk + Bnk

xk = Cqk + vk

where qk is the unobserved state of the process with measured output xk. The process has

a discrete time interval of τs = 1 sec in between time steps. Here,

A =




0 1

−0.9 1.8


 (3.80)

B =




0

1


 (3.81)

C =
[

0.5 1

]
(3.82)

Apriori statistics for the input and measurement noise sequences, nk and vk, also need to

be quantified. For this example, their covariances are

Q
4
= E[nknT

k ] = σ2
n = 1

R
4
= E[vkvT

k ] = 0.08

Therefore, nk and vk are zero-mean Gaussian white noise sequences with variances as shown above,

such that nk ∼ N (0, Q) and vk ∼ N (0, R). The level-crossing problem is formulated by choosing

the critical, fixed threshold, L = 16. A sample realization of the process and the fixed threshold is

shown in Fig. 3.3.

Our problem is to design an optimal alarm system that predicts at least one operat-

ing complaint, as defined previously (P (xk < L|x0, . . . , xk) − P (xk < L, xk+1 < L, . . . , xk+m <

L|x0, . . . , xk) ≥ Pb), or at least one arrival and operating complaint, also defined previously (1 −
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Figure 3.3: Process Realization and Level-Crossing Threshold for Examples 1, 2

P (xk+d < L, xk+d+1 < L, . . . , xk+d+m < L|x0, . . . , xk) ≥ Pb). Let’s define these two cases as Exam-

ple 1 and Example 2, respectively. For Example 1, we will use a 5-step ahead prediction window, or

m = 5. For Example 2, we will use the same m = 5 step ahead prediction window, and d = 2 as the

number of steps prior to the start of the beginning of the day.

3.3.2 Examples 3 and 4

The second pair of examples is based upon Federspiel’s 2nd-order model, which can be used

for complaint prediction in thermal comfort applications. Recall that this model involves a random

threshold, and the dynamics are quite different than those of Examples 1 or 2. In reality, there are

two stochastic critical levels, one for hot complaints, and another for cold. These levels represent the

temperature at which a group of occupants in a zone would complain if too hot or cold. However,

only the hot complaint level is to be used as an example in this chapter to prevent redundancy. It is

assumed that distinct optimal alarm systems for the two processes can be designed independently.
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Therefore the hot complaint level was arbitrarily chosen as the example of interest. The state-space

systems for both hot and cold critical levels, as well as the building temperature process of interest

can easily be parameterized. We first define the two state-space equations for the complaint levels

in continuous time:

ż(t) = Az(t) + Bn(t)

y(t) = Cz(t)

The building temperature process is also defined first in continuous time:

q̇(t) = Aq(t) + Bu(t) + Bww(t)

x(t) = Cq(t) + v(t)

where A =




0 1

−ω2 −2ζω


 (3.83)

B =




0

ω2


 ,Bw =




0

ω2


 (3.84)

C =
[

1 0

]
(3.85)

Note that we use the standard second order canonical form to represent the state-space

model for all three of the processes. It is possible to derive a formula, ω = σṪ

σT
by making the

connection between the statistics of the process output, y(t) and its derivative, ẏ(t), as shown in

[21, 22, 46]. Here, σ stands for standard deviation, and T , Ṫ stand for the output of any one of the

three processes, and its derivative, respectively. Therefore, TB = x(t) for the building temperature

process, or T = y(t) for either of the complaint level processes. Typically, we will use the subscript

B for the building temperature process, and the subscript H or L, for the hot and cold complaint
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level processes, respectively. However, often we will leave this variable unsubscripted when there is

no need to make a distinction among any of the processes, or when we are referring only to the hot

complaint process.

All of these systems must be discretized for the discrete time analysis in the previous section

to apply. This is done by performing a zero-order hold on all of the above systems, again as shown

in [46]. As such, a sampling interval, τs, must also be chosen. As a rule of thumb, we choose a

discrete time sampling interval based upon it being a fraction of the shortest time constant of the

dynamics of all relevant processes. This will also be a useful fact when considering “whiteness” of

the input and measurement noise. Specifically, τs = min (τh,τc,τb)
5 ≈ 18 min in between time steps,

where τh = 1
ωh

, τc = 1
ωc

, τb = 1
ωb

are the time constants of the hot, cold, and building processes,

respectively. These constants are provided later, in Table 3.1. We round τs to 20 min, since its even

multiple is 60 min, or an hour, which is a much more convenient unit of time to deal with than

multiples of 18 min.

Again, apriori statistics for the zero-mean input and measurement noise processes, w(t)

and v(t), can be quantified. n(t) is a non-zero mean white noise process. All are scalar processes,

such that w(t), v(t), n(t) ∈ R. Note that u(t) ∈ R is a scalar fixed control input, which in our

application acts as the thermostat setpoint. For this example, the variances of n(t), w(t), and v(t)

are as follows:

Qw
4
= E[w(t)w(t)T ]

Qn
4
= E[n(t)n(t)T ]

R
4
= E[v(t)v(t)T ]

Therefore, with a Gaussian assumption on the input noise, we have the following: w(t) ∼

N (0, Qw), v(t) ∼ N (0, R), and n(t) ∼ N (µT , Qn). Note that R is only applicable to the building
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temperature process, as it is the measured process, and n(t) is only applicable to the complaint

process, where there is no defined “control input.” Since we assume that modelling the complaint

levels requires no direct control input term, the mean of the input noise driving these processes is

taken as the mean of the output. Also, no measurement noise needs to be modelled because there

are no measurements of these unobserved processes. Furthermore, it is interesting to note that the

complaint processes can be modelled as being statistically independent of the building temperature

process for reasons as stated in Chap. 2 and Federspiel [19].

For the building process, typically the measurements come from a DDC (Direct Digital

Control) system associated with more sophisticated commercial building systems. Otherwise, these

types of measurements often come from micro-dataloggers that record the temperature for a preset

period of time. Usually there is some sensor lag and/or noise associated with these measurements.

It has been shown that the lag can be modelled simply as a first order transfer function [47], or dealt

with otherwise [21]. In the latter case, the formula for the standard deviation of the rate of change

of the building temperature is readjusted by using the formula σṪB
= σTB

max( 1
ωB

−0.4,0.4)
, to account

for the lag. However, here we do not model the sensor lag, and only model the measurement noise,

v(t), as a zero-mean white noise process with variance R.

Table 3.1 provides the relevant parameters and respective values for all three processes

in continuous time. With the exception of the last two columns, these parameters come from

Federspiel’s work [22]. The fourth columns’ (ω) values were derived from the first three using

documented methods [21, 22, 46]. The fifth columns’ (ζ) values were selected heuristically for

simulation/analysis ease [46, 47].

µT σT σṪ ω ζ

Hot 91oF 5.06oF 1.14
oF
hr 0.6645 rad

hr 1
Cold 50.43oF 6.14oF 4.08

oF
hr 0.2253 rad

hr 1
Bldg 74oF 3.57oF 0.91

oF
hr
∗ 0.2682 rad

hr 1

∗Typically requires sensor lag adjustment

Table 3.1: Table of Building and Complaint Temperature Statistics
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Recall that the discretized systems must be computed by using the sampling interval,

τs. The measurement noise was found by computing the pooled variance of the recordings of 88

independent dataloggers during a single-point ice bath calibration over the course of approximately

17.78 hours. The measurements have a correlation time of τd = 5-minute increments, and our

pooled variance is Rdraw
= 0.047519. The approximate power spectral density can be computed by

using the formula Rpsd ≈ 2Rdrawτd, [55]. In order to find the discretized measurement noise, we

must then scale by the sampling interval, τs, giving us Rd = Rpsd

τs
≈ 2Rdraw τd

τs
, [55]. However, in

order to use this approximation, we assume the noise is white compared to the sample period, i.e.

the sample period is small with respect to system time constant(s). Therefore it must hold that

τd ¿ τs ¿ min(τh, τb, τc). In this case, with τd = 5-min, τs = 20-minute, and min(τh, τb, τc) = 90

min, the approximation is marginal.

We must pay close attention to the relationship among these sampling intervals when

modelling measurement noise. The same requirements of τd ¿ τs ¿ min(τh, τb, τc) are not necessary

for our input noise discretization procedure, because an alternative method is used, shown in Eqns.

3.93-3.105 for all relevant processes. For the assumption of whiteness of measurement noise, if there

is ever a case in which τd is on the same order of magnitude, or larger than τs, then the measurement

noise effects must be modelled as dynamics within the state of the system itself, and estimated along

with the other states using Kalman filter techniques. It may also be possible to ignore this and treat

the measurement noise as white, however the estimates will no longer be optimal [55]. Otherwise,

we can ignore the noise altogether in which case it may be considered as “unmodelled dynamics.” In

our case, however, with τd = 5-min, τs = 20-minute, and min(τh, τb, τc) = 90 min, the measurement

noise can still (marginally) be modelled as white.

The only reason why we are concerned with computing the measurement noise now is

because we need to use it to perform Kalman filtering and prediction. This is a prerequisite to

implementing an optimal alarm system. The formulae relating the remaining discretized, discrete-

time parameters to their continuous-time counterparts are shown in Eqns. 3.86-3.109. The state-



76

space parameters are discretized by performing a zero-order hold of all three processes. The input

noise discretization results are shown for the building temperature process only, using a documented

procedure [6, 35, 25, 55]. The input noise variances for the complaint level processes were not

discretized, rather they were found by using discrete-time Lyapunov analysis of the discretized

state-space system (shown in part below). A documented method [46] shows details on how to

derive the discrete-time input noise based on a continuous and discrete time Lyapunov analysis of

the statistics for these processes.

Discretization of state-space equations for all processes:

zk+1 = Adzk + Bdnk (3.86)

yk = Cdzk (3.87)

qk+1 = Adqk + Bduk + wk (3.88)

xk = Cdqk + vk (3.89)

where

Ad = eAτs (3.90)

Bd = (eAτs − I)A−1B (3.91)

Cd = C (3.92)

Discretization of input and measurement noise parameters:

Complaint Process Input Noise:
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nk ∼ N (µT , Qnd
) (3.93)

Qnd
= E[nknT

k ] (3.94)

= 1364.3oF (for hot complaint level) (3.95)

= 2008.9oF (for cold complaint level) (3.96)

=
σ2

TB

CdP̃
L

ssC
T
d

(3.97)

where P̃
L

ss
4
=

PL
ss

Qnd

(3.98)

= AdP̃
L

ssA
T
d + Bwd

BT
wd

(3.99)

Building Temperature Process Input Noise:

wk ∼ N (0,Qwd
) (3.100)

Qwd
=

∫ τs

0

eAλBwQwBT
weAT λdλ (3.101)

=




0.0091816 1.0994× 10−5

1.0994× 10−5 1.8369× 10−8


 (3.102)

where Qw =
σ2

TB

CP̃cCT
≈ 7.2× 105 oF (3.103)

and P̃c
4
=

Pc

Qw
(3.104)

AP̃c + P̃cAT = BwBT
w (3.105)

Building Temperature Process Measurement Noise:

vk ∼ N (0, Rd) (3.106)

Rd = E[vkvT
k ] (3.107)

≈
2Rdrawτd

τs
(3.108)

= 0.023759oF (3.109)
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The level-crossing problem can be viewed using two distinct paradigms. One way is to

consider the measured process as crossing a random threshold. Another way to consider it is to take

the difference between the two processes, and characterize its crossing interactions as fixed zero-level

upcrossings of the level L = 0. For this to happen, the process must be defined as z(t)
4
= x(t)−y(t),

or zk
4
= xk−yk when considering the interaction between the hot complaint process and the building

temperature process. A sample realization of all three processes interacting is shown in Fig. 3.4.

In this figure, we present level crossings as defined by the first paradigm. Fig. 3.5 shows zero-level
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Figure 3.4: Building and Complaint Process Realizations with Level-Crossings

crossings of the difference between the hot complaint process and the building temperature process,

which looks very similar to Fig. 3.3.

Again, our problem is to design an optimal alarm system that predicts at least one operating

complaint, P (zk < 0|x0, . . . , xk) − P (zk < 0, zk+1 < 0, . . . , zk+m < 0|x0, . . . , xk) ≥ Pb), or at least

one arrival and operating complaint, 1− P (zk+d < 0, zk+d+1 < 0, . . . , zk+d+m < 0|x0, . . . , xk) ≥ Pb.

Let’s define these two cases as Example 3 and Example 4, respectively. For Example 3, we will use a
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Figure 3.5: Building and Hot Complaint Process Realizations with Zero-Level Crossings

12-step ahead prediction window, or m = 12. This corresponds to a 4-hour period in which operating

complaints can occur either during the morning or afternoon period of the day. For Example 4, we

will use the same m = 12 step ahead prediction window, and d = 3 as the number of steps prior

to the start of the day. In this 1-hour period prior to the beginning of the day, we want to predict

both arrival complaints and operating complaints in the ensuing 4-hour period.

3.4 Results for Examples 1 and 2

3.4.1 Example 1: Svensson Model, Operating Complaints Only

Recall that complicated multi-dimensional events of the type proposed require simulations,

and “counting” to obtain an estimate of the exact Type I/II error probabilities. The main point of

the theory section was to provide viable alternative approximations to this “counting” method in

order to reduce computation time. Although these approximations still require Monte Carlo simula-

tions to compute numerical integrations of complex integrals, doing so is much less computationally
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expensive than simulating and counting the number of correct/false alarms and correct/missed de-

tections. Therefore, we shall simulate the probabilities using the exact method, and compute all

of the approximations to the optimal alarm system for comparison. Our main goal is to determine

which approximation is the most suitable by trading off accuracy with computational attractiveness.

Recall that the optimal alarm systems of interest are the 2-dimensional alarm system approximation,

the multiple sub-interval approximation (for all sub-intervals), and the multi-dimensional approxi-

mation. Clearly, there will be error involved with making any of these approximations. This error

can be quantified by taking the 1-norm difference between the exact and approximate Type I/II

errors across all border probabilities, Pb.

For this example, our problem is to design an optimal alarm system that predicts at least

one operating complaint, (P (xk < L|x0, . . . , xk)−P (xk < L, xk+1 < L, . . . , xk+m < L|x0, . . . , xk) ≥

Pb. Recall that we are using a 5-step ahead prediction window, or m = 5. An example of exact

vs. approximate Type I/II errors for the 2-dimensional alarm system approximation as a function

of border probabilities is shown in Fig. 3.6.
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In Fig. 3.6, 360 sample points were used to compute the Monte Carlo integrations resulting

in the approximate Type I/II Errors, P approx
i , for all border probabilities, Pbi

. The grid for Pbi
has

a resolution of 0.01, and ranges from 0.01 to 0.99. P̂ exact
i represents the relative frequency of false

alarms and missed detections, for a 100, 000 second simulation run for each grid point, Pbi
.

Fig. 3.7 illustrates the 1-norm difference between the exact and approximate Type I (on

top) and Type II (on bottom) errors as a function of the number of sub-intervals. Note that as

the number of sub-intervals increases from the single interval 2-dimensional approximation to the

maximum number possible, the difference between the exact and the approximate methods dies

away, and then comes back up slightly. Also superimposed on this graph, as a fixed dotted line,

are the multi-dimensional approximation results, for comparison. They are fixed because the result

is independent of the number of sub-intervals. One may think of the multi-dimensional result as

being most closely related to the result for the maximum number of sub-intervals, because they

share the same dimensionality. Results are shown when using both 360 sample points on the left

and 3600 sample points on the right, to compare accuracy of the Monte Carlo integration result.

Error bars are also shown for all approximations, ± a single standard error. The points that are

circled correspond to the 1-norm Type I/II approximation errors derived from the 2-dimensional

alarm system approximation shown as a function of border probabilities in Fig. 3.6.

τ̂ = ‖P̂ approx
fa − P̂ exact

fa ‖1 4=
NPb∑

i

|P̂ approx
fai

− P̂ exact
fai

| (3.110)

SE(τ̂) =

√√√√
NPb∑

i=1

1
napprox

i

P̂ approx
fai

(1− P̂ approx
fai

) +
1

nexact
i

P̂ exact
fai

(1− P̂ exact
fai

)

Eqn. 3.110 illustrates the 1-norm difference and standard error equations, for Type I false

alarms. P̂fai is the relative frequency and approximate probability of false alarms based upon a large

N = 100, 000-sample simulation. NPb
= 99 (the number of grid points that Pb ∈ [0, 1] spans). ni

represents the number of alarms that sound in the N -sample simulation. To compute the standard

error, it is assumed for convenience that alarms are independent, and can be modelled as Bernoulli
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Figure 3.7: Type I/II Approximation Error, ‖P̂ approx − P̂ exact‖1 vs. Number of Sub-intervals

random variables. It is possible to compute all approximations to Type I/II probabilities using

the numerical integration method described previously. As such, no direct simulation is required,

but in the process of computing the probabilities numerically, Monte Carlo simulation is required.

Therefore, the P̂ approx
fa portion of the standard error is not based on relative frequencies. It is

computed numerically, so it should be written as P approx
fa . This comes from residual Monte Carlo

simulation error, and is added to the standard error equation shown above in an appropriate manner.

3.4.2 Example 2: Svensson Model, Both Arrival and Operating Com-

plaints

For this example, our problem is to design an optimal alarm system that predicts at

least one arrival and operating complaint, also defined previously (1 − P (xk+d < L, xk+d+1 <

L, . . . , xk+d+m < L|x0, . . . , xk) ≥ Pb). Recall that we use the same m = 5 step ahead prediction
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window, and d = 2 is the number of steps prior to the start of the beginning of the day. An ex-

ample of exact vs. approximate Type I/II errors for the 2-dimensional alarm system approximation

describing this example as a function of border probabilities is shown in Fig. 3.8.
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Again, in Fig. 3.8, 360 sample points were used to compute the Monte Carlo integrations

resulting in the approximate Type I/II Errors. A 100, 000 second simulation run for the “exact”

probability computations was used again as well. Fig. 3.9 shows the 1-norm approximation error as

a function of the number of sub-intervals, along with the multi-dimensional approximation results,

for comparison. Both Type I/II approximation errors are shown. Results are shown when using 360,

3600, 36000, and 360000 sample points to compare accuracy of the Monte Carlo integration result.

The multi-dimensional approximation method results are shown as fixed dotted lines, where

the Type I results are always below the Type II results. Again, the points that are circled corre-

spond to the 1-norm Type I/II approximation errors derived from the 2-dimensional alarm system

approximation shown as a function of border probabilities in Fig. 3.8.

The sub-interval approximation results shown have also been computed by making the

approximation of each sub-interval with upcrossings, as originally defined. However, due to the
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Figure 3.9: Type I/II Approximation Error (Upcrossings), ‖P̂ interv − P̂ exact‖1 vs. Number of Sub-
intervals

nature of the hypothesis being tested, this need not be the sole method of approximation for sub-

intervals. In fact, intuitively arrival complaints can be described more accurately with downcrossings

than with upcrossings. Recall that arrival complaints are defined as “exceedances,” and late arrivals

are allowed. Because exceedances are defined in single time slice, we don’t know about the arrival

complaint until the exceedance terminates in some subsequent time slice. Therefore, the arrival

complaint can best be determined with knowledge of a downcrossing.

Fig. 3.10 illustrates an example of exact vs. approximate Type I/II errors for the 2-

dimensional alarm system approximation describing the “downcrossing” version of this case as a

function of border probabilities. The same simulation parameters were used as in the “upcrossing”

case.

Fig. 3.11 illustrates the revised “downcrossing” sub-interval approximation results. These

figures show the Type I/II 1-norm approximation error as a function of the number of sub-intervals,
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Figure 3.10: Type I/II Errors (Downcrossings): P̂ approx
i , P̂ exact

i vs. Pbi

along with the multi-dimensional approximation results, for comparison. Here results are shown

when using both 360 and 3600 sample points to compare accuracy of the Monte Carlo integration

result. Circles correspond to the Type I/II 1-norm approximation error derived from Fig. 3.11.

3.4.3 Discussion of Results for Examples 1 and 2

Before proceeding further, it is necessary to credit work performed by Svensson, [69], p.

94, for his foresight in realizing the need for sub-interval approximations when dealing with a level-

crossing in a time interval with non-adjacent endpoints. However, his null hypothesis only deals with

a single upcrossing in the entire time interval, as opposed to “at least one,” as we do here. Therefore,

even though the approximations that are being used in both cases are identical, the fundamental

questions being asked, or null hypotheses, are quite different. Consequently, the resulting alarm

system characteristics and will be different as well. We’ll discuss and compare the merits of the

multiple sub-interval approximation method and the multi-dimensional approximation, which is

tailored for the case when we have multiple level crossings over a time interval.

The detection probabilities, or Type I/II error probabilities will be biased when using a
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Figure 3.11: Type I/II Approximation Error (Downcrossings), ‖P̂ interv − P̂ exact‖1 vs. Number of
Sub-intervals

sub-interval approximation to Svensson’s hypothesis. When using the single interval 2-dimensional

approximation, the detection probability will be higher than for the exact event. Using multiple

sub-interval approximations will result in the detection probability being lower than for the exact

event. Different biases will apply for our hypothesis. Recall from Fig. 3.7, that when the number

of sub-intervals increases, the error between the exact and the approximate methods dies away, and

then comes back up slightly. This phenomenon is related to the competing effects of improvement in

approximation with increased number of subintervals, and introduction of errors from two sources.

The first source of error is due to the compounding “rectangularization” approximations

that are made with each new 2-dimensional sub-interval. The second source of error is due to the

approximation made for the entire exact alarm region, by using the union of disjoint sub-intervals.

The latter is the primary source of error, and has to do with the fact that the well-defined region of
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integration, ΩAapprox , is a heuristic approximation of ΩAexact .

Fundamentally, these two alarm regions are not the same. Recall that for sub-interval ap-

proximations, Aapprox =
⋃Ns

i=1 Ai, which is simply an approximation of Aexact. There is no guarantee

that this approximation will improve with the number of subintervals. In fact, intuitively we know

that sub-interval approximations capture only the number of “upcrossings” in all sub-intervals. The

exact alarm condition will capture more complicated cases which don’t restrict upcrossings to occur

in specific sub-intervals. Recall the definition of the exact alarm condition for operating complaints

only:

Cexact = {X ∈ ΩCexact ⊂ Rm+1}

= ¬{xk < L, xk+1 < L, . . . , xj < L, . . . , xk+m < L} \ {xk > L}

=
not︷︸︸︷¬ {xk < L, xk+1 < L, . . . , xj < L, . . . , xk+m < L}︸ ︷︷ ︸

no complaints

take away︷︸︸︷
\ {xk > L}︸ ︷︷ ︸

arrival complaints

Here we are saying that operating complaints can be defined with any sequence of process

values above or below the critical threshold, as long as all of the values don’t lie above the threshold,

and the first process value is not above the threshold (to prevent us from counting arrival complaints).

An example of where the sub-interval approximation fails is when upcrossings are checked for each

pair of adjacent sub-intervals. As we increase the number of sub-intervals, this restriction becomes

tighter and tighter until we reach the maximum number of sub-intervals, and each pair of adjacent

sub-intervals is identically each pair of adjacent time slices. In this case (as in all cases), the process

value is restricted to be above the critical threshold at the last time slice. However, we know in the

case of the exact alarm condition, there is no such restriction at the last time slice. Furthermore,

geometrically speaking, we know that the space carved out in m + 1-dimensional space by ΩAapprox

will never be the same as the space ΩAexact .

As we’ve seen in Fig. 3.7, the multi-dimensional approximation method (dotted line) has
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the lowest error of all methods, regardless of the number of subintervals, or type of error probability.

In fact, as we increase the number of sampling points, the error naturally decreases, but even further

below the sub-interval method. It is obvious that using the multi-dimensional method provides for

better accuracy than the 2-dimensional or the multiple sub-interval approximation methods. This

is further evidenced by Example 2, in which we compare the multi-dimensional methods to two

different kinds of sub-interval methods: both upcrossings and downcrossings in Figs. 3.9 and 3.11.

Notice also that for each diagram, the error bars naturally decrease in size with the number

of sampling points chosen for the numerical integration. This is most evident in Fig. 3.9. Here, there

is much difficulty in reducing the error in the numerical integration when the number of sub-intervals

is large for the Type I error probability. However, with a sufficient number of points used in the

numerical integration routine, they can be reduced. Part of the reason for this anomaly may be due

to the fact that using upcrossings to approximate the exact alarm condition for both arrival and

operating complaints is probably not as accurate as using downcrossings. This is evident in Fig.

3.11. Notice that the magnitude of the error and the error bars for downcrossings is much less than

for upcrossings, particularly for Type II errors. However, the main conclusion to gather from these

results is the fact that the multi-dimensional method is always better with respect to accuracy of

the approximation.

From an engineering and alarm design standpoint, we now need to consider the trade off

between accuracy and computational attractiveness. From the standpoint of the multi-dimensional

approximation method, it has the same computational burden as using the sub-interval method

when Ns = m. Otherwise if Ns < m, the sub-interval method has a more desirable computational

load. Recall that Ns is the number of subintervals, and m is the number of steps in the prediction

window. Therefore, Ns can be considered an alarm design parameter. We are required to use m

terms when implementing the multi-dimensional approximation method. However, the accuracy is

better.

Reduced design time can be achieved by using the sub-interval method for the number of
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sub-intervals that yields the lowest error, trading off accuracy. The judgement of which method to

use is left to the discretion of the designer. When using 360 points in the numerical integration

scheme for operating complaints only, and for the Type I error probability, using 4 sub-intervals is

probably as good a choice or perhaps better than using the multi-dimensional method. Here the

accuracy is about the same, and the design time will be a little less due to the computation burden

of having 24 terms to evaluate in lieu of 25.

Recall that one of the issues mentioned before was trying to make the multi-dimensional

method more efficient computationally. An alternative to using the inlcusion/exclusion rule, which

has O(2m) terms, was to compute its complement instead, i.e. P (
⋃

i Ai) = 1 − P (
⋂

i A′i). This

method seems like it should turn out to be more useful here than for sub-intervals. Using it for

sub-intervals requires O(22Ns ) terms, in lieu of the O(2Ns) terms required by computing P (
⋃

i Ai)

directly. For the multi-dimensional approximation, O(m) terms are required, in lieu of the O(2m)

terms needed by using the inclusion/exclusion rule. Therefore, using this method for the multi-

dimensional approximation will considerably reduce the number of terms to compute.

However, there are still instances in which using the inclusion/exclusion rule for the multi-

dimensional method provides similar accuracy for a smaller number of Monte Carlo integration

sample points. In other words, even though the inclusion/exclusion rule requires O(2m) terms, the

numerical integration error for all of the terms will be much smaller than the resulting error when

using the same number of Monte Carlo integration sample points for the alternate method. Even

though the computation requires an order of magnitude fewer terms, computing the probability with

the same accuracy takes just as long. The number of sample points required to achieve the same

accuracy is much greater, hence the computational burden is the same or worse. This intuitive reason

for this is that the complement of the events in question are located in a section of the probability

space that is harder to sample by using Monte Carlo integration than the original events. Therefore,

although computing the probabilities requires fewer terms, it takes just as long to attain the same

level of accuracy.
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A picture of the multi-dimensional approximation results vs. the sub-interval and exact

methods is shown in Fig. 3.12. The multi-dimensional approximation and the sub-interval methods

have used the same number of numerical integration sample points (3600) for this figure as well.
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Figure 3.12: Type I/II Error Comparisons, Operating Complaints Only

Fig. 3.12 is the case for Example 1, operating complaints only. Notice that there is trend

as the number of sub-intervals (dashed lines) is increased (up to a point), and how closely the multi-

dimensional method (dotted lines) track the exact results (thick solid lines), which is more evident

for Type II errors. There is an apparent convergence to the exact results, which is also more evident

for Type II errors.

As a prelude to presentation of the next 2 examples, we may conclude that any approxima-

tion with desirable accuracy/computational tradeoff characteristics may be chosen as the basis for

designing optimal alarm systems. This is preferable to performing a comparison between the exact

method and all of the different approximations, as shown in Figs. 3.7, 3.9, and 3.11. We’ve seen

that the multi-dimensional approximation is the best in terms of accuracy, even if it does amount

to a modest amount of computing time. We will develop an engineering judgement as to the best
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estimate of the number of subintervals needed for the lowest Type I/II error probability residuals,

if we decide against using the multi-dimensional approximation. Our purpose is for design, so addi-

tional accuracy is at the expense of the designers’ time. We are not using these results for real-time

control where a digital signal needs to be computed and delivered within certain prespecified timing

specifications.

Furthermore, running the exact method for comparison in the next 2 examples would

require an extreme amount of computational effort due to the use of the “counting” method, where

the statistics of Type I/II error probabilities are obtained by using ergodicity (See DeMaré [15] for

further details on this). This is especially true due to the fact that very few events will be generated

purely from simulation due to the nature of the spectral content of the processes in question, and

their relative means. The simulation would have to run an extremely long time in order to generate

results for the exact method that could feasibly be compared with the approximate methods.

3.5 Results for Examples 3 and 4

3.5.1 Example 3: Federspiel Model, Operating Complaints Only

As shown in Fig. 3.13, results for the multi-dimensional method (the dotted lines) can

be compared to the sub-interval method (the solid lines). For this example, we use the complaint

model and relevant parameters, as specified for operating complaints only. Recall that we use

a 12-step ahead prediction window, or m = 12. This corresponds to a 4-hour period in which

operating complaints can occur either during the morning or afternoon period of the day. In Fig.

3.13, convergence with sub-intervals (solid) to the multi-dimensional method (dotted) is apparent,

so therefore we can almost guess as to where the exact Type I/II error probabilities as a function of

Pbi might lie.

Notice that we only show the graph’s border probability out to 0.65 because of a numerical

issue beyond that point. This is due to a very low alarm probability beyond that point (it is close
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Figure 3.13: Type I/II Errors for Operating Complaints Only

to zero). The probability of false alarms is scaled by this quantity, hence resulting in numerical

problems. All approximations shown have used 3600 numerical integration sample points, and only

the first 4 sub-intervals are shown in solid lines.

3.5.2 Example 4: Federspiel Model, Both Arrival and Operating Com-

plaints

For the last example, we use the complaint model and relevant parameters, as specified for

both arrival and operating complaints. Recall that we use the same m = 12 step ahead prediction

window as in Example 3, and d = 3 as the number of steps prior to the start of the day. In this

1-hour period prior to the beginning of the day, we want to predict both arrival and operating

complaints in the ensuing 4-hour morning period. As shown in Figs. 3.14 and 3.15, results for the

multi-dimensional method (dotted lines) can be compared to the sub-interval method (solid lines)

when using upcrossings or downcrossings (Figs. 3.14 and 3.15, respectively).

As in Example 3, Fig. 3.14 illustrates convergence of the sub-interval method (solid) to the
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multi-dimensional method (dotted). Again, we can “guess” as to where the exact Type I/II error

probabilities as a function of Pbi
might lie. For Fig. 3.15, there is barely a perceptible difference

among the different sub-interval results and multi-dimensional result shown, barring low values of

Pbi
.
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Figure 3.14: Type I/II Errors for Both Arrival & Operating Complaints

All approximations shown have used 3600 numerical integration sample points. For Fig.

3.14 (upcrossings), the first 4 sub-intervals are shown. The first 3 sub-intervals are shown in Fig.

3.15 (downcrossings).

3.5.3 Discussion of Results for Examples 3 and 4

For examples 3 and 4, as the number of sub-intervals increases, the number of terms that

need to be computed increases exponentially as O(2Ns). Therefore the error involved with the

numerical integration for each of this terms scales respectively. As a result, the noise will increase

with the number of sub-intervals. Similarly, the noise will also be even greater for the multi-

dimensional approximation method, which requires O(2m) terms (m = 12). This is mainly evident
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Figure 3.15: Type I/II Errors for Both Arrival & Operating Complaints

in Fig. 3.13. Figs. 3.14 and 3.15 demonstrate that the noise due to the multi-dimensional method

(dotted lines) is most prevalent for low values of Pbi , otherwise there is very little difference between

this and the sub-interval results (solid lines).

Recall the number of numerical integration sample points used for the multi-dimensional

method (3600). This was quite a large number, and took significant design time. Improved accuracy

and reduced noise can be achieved by using an even larger number of sample points, at the expense of

an increased computational burden. The same logic holds for increasing the number of sub-intervals,

however, potentially only up to a point. Recall the results and discussion from Examples 1 and 2

that provided the rationale for the behavior of the error when the number of sub-intervals increases.

In those examples, the error between the exact and the approximate methods dies away, and then

comes back up slightly. However, as seen in Examples 3 and 4, only a few sub-interval results are

required for convergence to the exact results shown in Figs. 3.13, 3.14, and 3.15. Therefore, the

same behavior of the error between the exact and the approximate methods dying away, and then

coming back up slightly is not exhibited with the given limited range of sub-interval results.
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We can conclude that for Examples 3 and 4, using the sub-interval method is probably a

better approximation to use both in terms of computational burden and accuracy. When using just

a few sub-intervals (Ns = 3 or 4), we get reasonably convergent behavior, with a modest number of

terms to compute and less accrued integration error O(2Ns). However, when using the same number

of integration sampling points for the multi-dimensional approximation, the computational burden is

high, O(2m), where m = 12. Therefore, not only will this method result in a greater computational

burden, but it will also accrue more error due to the number of terms, as manifested in the noise

evident in Fig. 3.13 and Figs. 3.14, 3.15 for low values of Pbi
.

Furthermore, it seems that in the case of Example 4 specifically, when modelling both arrival

and operating complaints with downcrossings as opposed to upcrossings, the overall approximation

is much better (Fig. 3.15). It is most evident in how close the sub-interval method comes to the

multi-dimensional method in this Figure as opposed to Fig. 3.14. More sub-intervals might be

required to achieve an improved approximation to the multi-dimensional result in Fig. 3.14, which

we know will be closest to the exact result. In fact, we can see from Fig. 3.15, that it is very likely

that applying sub-interval method for the fewest number of sub-intervals is sufficient for design,

and in this particular case, provides better accuracy as well as computational efficiency than the

multi-dimensional method.

Therefore, Fig. 3.15 provides us with further evidence to our intuition that it is more

appropriate to model the case of both arrival and operating complaints with downcrossings than

with upcrossings, when using the sub-interval method. There is another important observation

to note in the use of upcrossings vs. downcrossings, independent of the hypothesis being tested

(operating vs. both arrival and operating complaints). In Figs. 3.13, and 3.14, both hypotheses

being tested use upcrossings to approximate the alarm region for differing null hypotheses. In these

two figures, we see a distinct similarity in qualitative appearance. Namely, there is a change in slope

at a critical border probability point whereas there is no such point for the downcrossing model in

Type I errors . This critical point may in fact be related to the optimal selection criteria for a new
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alarm design metric to be introduced in a future chapter.

3.6 Conclusion

Considering the results from all of the 4 examples presented, a general conclusion can be

made concerning the use of the approximations detailed in this chapter. When the null hypothesis

characterizes multiple events over a large prediction window, we are probably better off using the

sub-interval approximation, and a small number of sub-intervals. However, for cases in which the

prediction window is more modest, the multi-dimensional approximation will not only provide better

accuracy, but the computational burden will tend to be on par with the sub-interval method.

Nothing yet has been mentioned about the actual alarm design procedure or results from

its implementation, which can be performed by selecting the optimal Pb value. All of the theory

presented in this chapter hinges on a fundamental concept from decision theory. The Neyman-

Pearson Lemma provides us with this decision framework. This lemma allows us to design an optimal

alarm system that will elicit the fewest possible false alarms for a fixed detection probability. The

fixed detection probability is of course parameterized by the border probability, Pb. This border

probability therefore serves as a free parameter, and hence as the primary design metric.

The steps required for design of an alarm system have been covered in previous work [69, 70].

Suggestions for choosing an optimal Pb value in the design of the alarm system were provided here

as well. However, they tend to be based either on purely heuristic trial-and-error approaches, or cost

functions. For cost functions, sometimes it is easy to assign particular costs to events that penalize

the probability of alarms, false alarms, and missed detections, etc. Assigning these costs requires

heuristic knowledge of the risk-reward tradeoff in terms of Type I/II errors. Since the events that

typically need to be predicted for simple non-optimal alarm systems are extremely critical, Type I

errors (probability of false alarms) are obviously much less costly than Type II errors (probability of

missed detections). Therefore, because the costs are well known, simple alarm systems of the type
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described in the introduction are designed for Type II error avoidance.

However, an optimal alarm system can also be designed for very critical events in lieu of

a simple alarm system. In fact, the entire optimal alarm literature focuses on events of a critical

or catastrophic nature. In this case, we would still have a very good idea of the costs of Type I/II

errors. As such, these costs could easily be used to act as weights in the cost function described

above in order to choose an optimal Pb value in the design of an optimal alarm system.

There is an entire field, and a ubiquitous literature dedicated to the study of issues con-

cerning tradeoffs as discussed above known as decision theory and hypothesis testing (See VanTrees

[73] as an example). The purpose of this chapter was not to provide any new contributions to this

field, but rather to use existing theory to our advantage. Recall from our introduction that the main

incentive for considering optimal alarm system design was to address the needs of the engineering

system we’ve described as Examples 3 and 4 for multiple complaint prediction, involving events of

a less severe nature. Here, we require a more subtle balance between Type I and Type II errors.

In this case, a more sophisticated optimal alarm system is of interest, but as we’ve seen,

the results tend to show very high Type II errors over a large range of border probabilities. Because

of this, no matter what value of Pb is selected, there will always be a high probability of a “missed

detection.” Looking at figures in the previous results section, we see that even when the value of

Pb is low, resulting in a smaller probability of missed detection, the tradeoff is that the false alarm

probability is quite high. It seems as if we can never avoid almost certain missed detection in order

to achieve a reasonable false alarm probability.

Furthermore, little is known about the costs of Type I and Type II errors for our particular

application. However, as a general rule of thumb in building operations we are probably much better

off missing a possible customer complaint and saving the money in labor hours and dollars charged

to respond, than anticipating and responding to a complaint that will never happen. In this case a

facility manager might actually perform some sort of preemptive action in response to a false alarm,

causing even more actual complaints. So in a sense, false alarms have a higher cost in our particular
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application, unlike most applications where critical or catastrophic events might occur, and where

missed detections are much more costly. Therefore, we may benefit from a more creative selection

of an optimal Pb value, focused on optimizing false alarms.

There are several other decision rules that can be used from hypothesis testing/decision

theory, in lieu of the Neyman-Pearson decision rule. Among these are Bayesian, MAP (maximum a

posteriori), maximum likelihood, and the minimax criteria. The latter is derived from the Bayesian

criterion, and seeks to minimize the maximum risk. Some recent interesting developments have even

described adaptive on-line techniques using the Bayesian formulation [2]. However, there are still

considerable computational issues, and a well-defined cost function is still required, even when the

posterior probability is adaptively updated.

We have parameterized the Type I/II error probabilities based upon the Neyman-Pearson

decision rule via the border probability design metric Pb. If we choose to create a cost function

that weights the Type I/II errors equally, then we have suitable candidate for the minimax choice

as described above. In fact, we can read the optimal Pb value right off of the figures in the previous

section by applying this minimax decision rule. However, if we use this rule for Examples 3 and 4,

the results still tell us that both the probability of false alarms and missed detections will still be

quite high (close to .9 or in some cases higher).

For the application presented in Examples 3 and 4, we don’t seem to have much control

over the probability of missed detection without severely compromising the probability of false

alarms. As such, we may choose a cost function that has its roots in the accumulation of multiple

complaints. In other words, since lowering the probability of missed detections is difficult, we can

focus on minimizing false alarms with judicious selection of the cost function, since that seems to

have a higher priority for our application. Minimizing false alarms achieves the same objective as

maximizing correct alarms, and since we’re dealing with multiple complaints, the objective can

be reformulated even further to maximizing the expected number of complaints conditioned on an

alarm, E[C|A]. Unlike the probability of false alarm, this can be expressed as a convex, rather
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than a monotonic function of the border probability, and a unique maximum can be found. It is

theoretically an excellent alternative to using a cost function in finding the optimal value of Pb, when

applying the Neyman-Pearson lemma. The theory and practical merits of this new metric will be

covered in detail in Chaps. 5 and 7. We will find that using the E[C|A] design method has favorable

computational properties, because finding the metric as a function of Pb has a computational burden

that scales linearly in the number of time steps under consideration. Furthermore, in Sec. 7.2, we

will revisit the practical examples introduced in this chapter, to establish the practical usefulness of

using a particular design criteria for optimal alarm design.
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Chapter 4

Discretization of Level-Crossing

Formulae

4.1 Introduction

This short chapter can be viewed as an independent contribution to applied mathematical

statistics, based upon results from level-crossing theory. Although at first read the chapter may

seem unrelated to the remainder of the thesis, the results will be used in subsequent chapters. The

most important concept in this chapter is the introduction of approximations of stationary and non-

stationary Gaussian random process level-crossing formulae. These equations come from decades-old

theory, derived mainly from the works of Rice [61], Cramér and Leadbetter [14].

The central idea is to use discrete approximations in lieu of their counterpart continuous

formulae. We will need to extend the discrete-time theory presented thus far, and formulate addi-

tional discrete-time theory, both which heavily rely on level-crossing formulae. We must make sure

that all level-crossing equations for Gaussian random sequences to be used are either in discrete form,

or are discretized versions of continuous equations. This is necessary in order for the application of
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theory to fit the discrete-time paradigm it is presented in. The equations of interest may be useful

for both optimal alarm design and optimal control in future chapters. The level-crossing formulae of

interest quantify the expected number of upcrossings over a specified time interval. These formulae

have representations in both continuous and discrete time. Several discrete time formulae have been

introduced in [7, 38] by Kedem and Barnett. Continuous formulae have mainly been seen in Rice

[61], Cramér and Leadbetter [14].

We may easily choose to use the discrete-time formula paradigm of Kedem and Barnett’s

work, [7, 38] however, it can be shown for specific cases that the resulting formulae are not in

closed form, even though they are exact. We prefer to have closed-form solutions when dealing with

real-time control for a number of reasons. In real-time control systems, the digital control signal

needs to be computed and delivered within tight timing specifications. Numerical solutions are

required for the discrete-time level-crossing formulae, and therefore incurs a greater computational

burden. As a result, these discrete-time formulae are not conducive to delivering a computation at

requested time for digital control purposes. For optimal alarm design, using closed form solutions of

level-crossing formulae are still preferable, due to the decreased computational burden and design

time. To summarize, instead of using generalizations of the discrete-time level-crossing formulae,

we perform very straightforward discretizations of the continuous-time level crossing formulae. A

flowchart illustrating the basic problem is shown in Fig. 4.1.

4.2 Theory

4.2.1 Zero-Level Upcrossings of a Zero-Mean Stationary Gaussian Ran-

dom Sequence

The expected number of zero-level upcrossings of a zero-mean stationary Gaussian random

sequence in a single time interval is provided in Eqn. 4.1, in discrete time [38].
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Figure 4.1: Comparative Flowchart

E[C] = P (xk < L, xk+1 > L) (4.1)

=
1
4
− 1

2π
arcsin(ρ1)

when L = 0

and µx = 0

where ρ1
4
=

cov(xk+1, xk)√
V ar(xk+1)V ar(xk)

For multiple time intervals, Eqn. 4.1 can simply be multiplied by the number of time
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intervals in question, m. Therefore, we get

E[C] = mP (xk < 0, xk+1 > 0) =
m

4
− m

2π
arcsin(ρ1) (4.2)

Notice that this formula has a very nice closed form. It can easily be parameterized by the one-step

autocorrelation, ρ1. Therefore, it is not necessary to discretize to obtain a closed-form. However, for

clarity of presentation, we’ll use this simple case to illustrate how the expected number of upcrossings

quantified by Rice’s continuous time formula [61] can be discretized. We know that the standard

level-crossing problem yields the mean upcrossing frequency, νx, given by Rice’s famous formula

[14, 19, 61], Eqn. 4.3.

νx =
σẋ

2πσx
e
− 1

2
(L−µx)2

σ2
x (4.3)

We can also compute the expected number of upcrossings, by taking the product of this

mean upcrossing frequency and the time period in question, t. Therefore, this gives us an expression

for E[C], shown in Eqn. 4.5.

E[C] = νxt (4.4)

=
t

2π

σẋ

σx
e
− 1

2
(L−µx)2

σ2
x (4.5)

However, notice that this equation is a continuous time representation of the process, x(t),

rather than its discrete-time equivalent, xk. The discrete time case for expected number of zero-

crossings has seen a comprehensive review, [7, 38], in which an analogous cosine formula is derived

easily from Eqn. 4.2. This formula is shown in Eqn. 4.6.

ρ1 = cos
(

2πE[C]
m

)
(4.6)

The derivation of Eqn. 4.2 can easily be extended to the case for when we are considering

non-zero level upcrossings, but the cosine formula, Eqn. 4.6, will no longer hold. Let’s now return
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to the discretization of Eqn. 4.5, and assume that the time interval in question is t = mTs, where

Ts is the sampling interval for the discretized system.

E[C] =
mTs

2π

σẋ

σx
e
− 1

2
(L−µx)2

σ2
x

=
mTs

2π

σẋ

σx
(4.7)

when L = 0

and µx = 0

Recall ẋ(t) =
dx

dt
= lim

∆t→0

x(t + ∆t)− x(t)
∆t

≈
x(t + ∆t)− x(t)

∆t

≈
xk+1 − xk

Ts
(4.8)

⇒ σ2
ẋ(t) = V ar(ẋ(t)) ≈ V ar

(
xk+1 − xk

Ts

)

This is essentially a first-order truncation of a Taylor series approximation to the derivative, or

equivalently, a “forward” difference approximation.

⇒ V ar

(
xk+1 − xk

Ts

)
=

1
T 2

s

[
V ar(xk+1) + V ar(xk)− 2ρ1

√
V ar(xk+1)V ar(xk)

]

Recall V ar(xk+1) = V ar(xk) for stationary processes

⇒ σẋ(t)

σx(t)
≈

√
2(1− ρ1)

T 2
s

This same result can be found be using a “backward” difference in lieu of a “forward” difference or

first-order Taylor series approximation to the first derivative. These type of approximations can only

be used in conjunction with the one-step autocorrelation, ρ1. Although more accurate than these

approximations by O(T 2
s ), a “central” difference cannot be used for comparison, because it would

require parametrization by the two-step autocorrelation, ρ2, instead of the one-step autocorrelation,

ρ1.

From Kedem [38], on pg. 129-130, the discrete and continuous time formulas were shown to

be related simply by characterizing the discrete time steps via a difference, ∆, and taking the limit
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as ∆ → 0. Therefore we can similarly prove sufficiency here such that limTs→0

√
2(1−ρ1)

T 2
s

= σẋ(t)

σx(t)
.

The derivation is provided as follows:

Note ρ1 = ρ(Ts)

Recall lim
Ts→0

x2(Ts) =
[

lim
Ts→0

x(Ts)
]2

⇒ lim
Ts→0

x(Ts) =
√

lim
Ts→0

x2(Ts)

⇒ lim
Ts→0

√
2(1− ρ1)

T 2
s

=

√
lim

Ts→0

2(1− ρ(Ts))
T 2

s

Now use L’Hôpital’s rule twice:

⇒ lim
Ts→0

√
2(1− ρ1)

T 2
s

=

√
lim

Ts→0

−ρ′(Ts)
Ts

=
√

lim
Ts→0

−ρ′′(Ts)

=
√
−ρ′′(0)

=

√
−R′′XX(0)

RXX(0)

=

√√√√σ2
ẋ(t)

σ2
x(t)

=
σẋ(t)

σx(t)

where the 2nd to last equality can be shown by using the assumption that the relevant spectral

moments exist, as on pg. 14 of Kedem [38]. A summary of the approximation performed by

discretizing the continuous formula is as follows:

Recall E[C] =
mTs

2π

σẋ

σx

≈
mTs

2π

√
2(1− ρ1)

T 2
s

=
m

√
2(1− ρ1)
2π

So for the case of a single time interval, where we choose m = 1 without loss of generality,



106

we have the discretization of Rice’s continuous formula, E[C] ≈
√

2(1−ρ1)

2π that approximates the

discrete-time formula E[C] = 1
4 − 1

2π arcsin(ρ1). The approximation is best when ρ1 is closest to 1,

as seen in Fig. 4.2.
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Figure 4.2: Discretization vs. Exact Discrete Level Upcrossings

4.2.2 Level Upcrossings of a Stationary Gaussian Random Sequence

From a more general standpoint, Eqn. 4.1 from the previous section can easily be extended

to the case of a non-zero level and non-zero mean , as shown in Eqns. 4.9-4.11. This represents

the exact discrete formula for the expected number of upcrossings of a stationary Gaussian random

sequence. Here there is no restriction on the level or the mean of the process, which can both be

non-zero.
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E[C] =
m−1∑

i=0

P (xk+i < L, xk+i+1 > L) (4.9)

=
m−1∑

i=0

∫ L

−∞

∫ ∞

L

N (xi; µxi , Σxi)dxi

where xi =




xk+i

xk+i+1


 ∈ R2

µxi =




µxk

µxk




Σxi = σ2
xk




1 ρ1

ρ1 1




and σ2
xk

= V ar(xk) = V ar(xk+1) (4.10)

⇒ E[C] = mP (xk+i < L, xk+i+1 > L)

= m

∫ L

−∞

∫ ∞

L

N (xi;µxi ,Σxi)dxi (4.11)

Note that the most that Eqn. 4.9 can be simplified is shown in Eqn. 4.11. This result is

not at all in closed form and requires numerical integration. Therefore, it would be very beneficial

to apply our approximation for its continuous counterpart derived in the previous section. It can

easy to see that Eqns. 4.12-4.14 now hold. The proof is exactly the same for the discretization of

the derivative process. The only other additional part we need to complete the proof is stationarity,

which is tacitly assumed in our use of Rice’s formula. This provides us with the fact that µx = E[x(t)]

in continuous time is the same in discrete time, µxk
= E[xk], ⇒ µx = µxk

, and likewise σx = σxk
.

Due to stationarity, these simple substitutions are good for the length of the interval in question. In

other words, we are making a “truncated” zero-order hold (ZOH) approximation assumption over

the time interval. An explanation of the “truncated” qualifier will follow shortly.
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E[C] =
mTs

2π

σẋ

σx
e
− 1

2
(L−µx)2

σ2
x (4.12)

≈
mTs

2π

√
2(1− ρ1)

T 2
s

e
− 1

2
(L−µxk

)2

σ2
xk (4.13)

=
m

√
2(1− ρ1)
2π

e
− 1

2
(L−µxk

)2

σ2
xk (4.14)

A graphic similar to Fig. 4.2 for this case cannot be illustrated without introducing a

specific example. We can certainly show E[C] as a function of µxk
, for different values of ρ1.

However, it is much easier to summarize the reduction of error in the approximation as a function of

the one-step autocorrelation, ρ1, as in Fig. 4.2. Therefore, we will save such illustrations for later,

when we introduce a relevant example. The approximation shown in Eqn. 4.14 is very useful when

developing discrete-time cost functions for optimal control. This approximation may be useful in

our optimal control chapter, by assuming that the processes of interest are stationary and Gaussian.

4.2.3 Level Upcrossings of a Non-Stationary Gaussian Random Sequence

Finally, we must consider the most general case of a non-stationary Gaussian random se-

quence. This is necessary because the predicted process of a stationary Gaussian random sequence

is actually non-stationary. Recall that predictions are necessary when dealing with optimal alarm

design. Furthermore, the conditional predicted process, xk+i|k, is not stationary because the vari-

ance can be shown to change with the length of the prediction window, i. Let’s assume the same

formulation as in the previous chapter, such that we will condition on all available information to

obtain our prediction, via the Kalman filtering paradigm. Hence Eqns. 4.15-4.19 represent the

corresponding exact discrete formula for the expected number of upcrossings of a non-stationary

Gaussian random sequence.
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E[C|x0, . . . , xk] =
m−1∑

i=0

P (xk+i < L, xk+i+1 > L|x0, . . . , xk) (4.15)

=
m−1∑

i=0

E[Ci|x0, . . . , xk] (4.16)

=
m−1∑

i=0

g(x̂k+i|k, x̂k+i+1|k) (4.17)

=
m−1∑

i=0

∫ L

−∞

∫ ∞

L

N (xi; µxi , Σxi)dxi (4.18)

where xi =




xk+i|k

xk+i+1|k



4
=




xk+i|x0, . . . , xk

xk+i+1|x0, . . . , xk


 ∈ R2

µxi =




x̂k+i|k

x̂k+i+1|k




Σxi =




V ar(xk+i|k) cov(xk+i|k, xk+i+1|k)

cov(xk+i+1|k, xk+i|k) V ar(xk+i+1|k)


 (4.19)

This formula is very intuitively appealing, because we see how the expected number of

upcrossings is related to the sum of the probabilities of upcrossings in each consecutive, adjacent

pair of time slices in the entire prediction window. Unlike the stationary case, there is no further

simplification when spanning m multiple time intervals. Furthermore, there is still no closed-form

solution, and even when applying a similar approximation as before, there is no actual closed-

form solution. However, we may develop a clever combination of approximations that reduces the

computational burden significantly. The same idea of discretization is used, but we no longer can

use the ZOH (zero-order hold) assumption. Rather, it will be much more useful to use a first-

order hold (FOH) approximation due to the non-stationarity of the process, as well as another basic

approximation that we’ll introduce shortly.

Let’s first present the formula for the expected number of upcrossings in an interval of a

non-stationary Gaussian process in continuous time. This formula was first introduced in the famous

Cramér and Leadbetter monograph, [14], on pg. 289, shown here as Eqn. 4.20. In the following



110

equations, x(t) represents the nonstationary process of interest in continuous time, and L is the

critical level. It is also known as the Leadbetter-Cryer integral.

E[C] =
∫ Ts

0

r′(t)
η(t)

φ (r(t)) [φ(η(t)) + η(t)Φ(η(t))] dt (4.20)

where r(t) =
m(t)
σ(t)

and η(t) =
m′(t)− γ(t)%(t)r(t)

γ(t)
√

1− %2(t)

m(t) = E[x(t)− L]

σ2(t) = V ar(x(t)− L)

γ2(t) = V ar(ẋ(t))

%(t) = cor(x(t)− L, ẋ(t)) =
cov(x(t)− L, ẋ(t))

σ(t)γ(t)

φ(z) = Standard Normal PDF =
1√
2π

exp−
z2
2

Φ(z) = Standard Normal CDF =
∫ z

−∞
φ(λ)dλ

Now let’s perform the FOH discretization procedure based upon the interpolation formula

shown in Eqn. 4.21. In the derivation we compute the expected number of level-crossings over a

single time interval, such that m = 1, without loss of generality.
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x(t) ≈ xk|k +
t

Ts
(xk+1|k − xk|k) (4.21)

bT 4
=

[
1− t

Ts

t
Ts

]
(4.22)

⇒ m(t) ≈ x̂k|k − L +
t

Ts
(x̂k+1|k − x̂k|k) (4.23)

= bT µxi − L (4.24)

⇒ m′(t) ≈
x̂k+1|k − x̂k|k

Ts
(4.25)

=
∂bT

∂t
µxi

(4.26)

σ2(t) ≈ bT Σxi
b (4.27)

γ2(t) ≈
∂bT

∂t
Σxi

∂b
∂t

(4.28)

σ(t)σ′(t) ≈
∂bT

∂t
Σxib = bT Σxi

∂b
∂t

(4.29)

%(t) ≈
σ′(t)
γ(t)

=
∂bT

∂t Σxib√
bT Σxib

(4.30)

r(t) ≈
bT µxi − L√

bT Σxib
(4.31)

Now that we’ve approximated all of the terms of the Leadbetter-Cryer integral in discrete-

time by performing a FOH discretization, we need to invoke a clever way to simplify computing this

integral.

Let g(t)
4
=

r′(t)
η(t)

[φ(η(t)) + η(t)Φ(η(t))] (4.32)

⇒ E[C] =
∫ Ts

0

φ(r(t))g(t)dt (4.33)

Recall r(t) =
m(t)
σ(t)

(4.34)

Let’s now make a convenient simultaneous definition of r(t), where we tacitly now redefine

t as a Gaussian random variable.
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Let r(t) =
t− µ

s
=

m(t)
σ(t)

(4.35)

where µ = t∗ : m(t∗) = 0 (Solve with Eqns. 4.23-4.24) (4.36)

⇒ s = lim
t→µ

t− µ

r(t)
(4.37)

=
1

r′(µ)
(4.38)

⇒ E[C] =
∫ Ts

0

φ(
t− µ

s
)g(t)dt (4.39)

=
∫ Ts

0

1
s
φ(

t− µ

s
)

︸ ︷︷ ︸
N (t;µ,s2)

f(t)
4
=︷ ︸︸ ︷

sg(t) dt (4.40)

=
∫ Ts

0

N (t; µ, s2)f(t)dt (4.41)

=

(∫ Ts

0

N (t; µ, s2)dt

)
(E[f(t)|0 < t < Ts]) (4.42)

≈
[
Φ

(
Ts − µ

s

)
− Φ

(−µ

s

)]
f(µ) (4.43)

The final approximation was made by using the fact that f(µ) ≈ E[f(t)|0 < t < Ts] if f(t)

is sufficiently smooth over the region of integration [9, 56].

⇒ E[C] ≈
[
Φ

(
Ts − µ

s

)
− Φ

(−µ

s

)]
sg(µ) (4.44)

=
[
Φ

(
Ts − µ

s

)
− Φ

(−µ

s

)]
sr′(µ)
η(µ)

[φ(η(µ)) + η(µ)Φ(η(µ))] (4.45)

Recall s =
1

r′(µ)
(4.46)

⇒ E[C] ≈
[
Φ

(
Ts − µ

s

)
− Φ

(
−µ

s

)] [
φ(η(µ))

η(µ)
+ Φ(η(µ))

]
(4.47)

The final expression is simply a nonlinear function of s and µ. Although not quite in

closed form due to the presence of Φ(·), there is an extreme computational advantage by solving

this equation in lieu of the integral in its original form. Standard routines to compute Φ(·) via

the error function, erf(·) are pervasive and very computationally efficient. Recall how µ is found:

µ = t∗ : m(t∗) = 0. The expression was found by using the fact that the mean of a Gaussian can
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be found at its maximum, so we can take the derivative of φ(r(t)) and set it to zero. This gives

−r(t∗)φ(r(t∗))r′(t∗) = 0 ⇒ r(t∗) = 0 ⇒ m(t∗) = 0. Therefore, we can easily find the location of the

maximum, and hence the mean is µ = t∗, where t ∼ N (µ, s2) ⇒ φ(r(t)) = φ( t−µ
s ). This is solved

with Eqns. 4.23-4.24, giving µ = Ts(L−x̂k|k)

x̂k+1|k−x̂k|k
. Furthermore, s = 1

r′(µ) =
[

σ′(µ)
σ(µ)

(
m′(µ)
σ′(µ) − m(µ)

σ(µ)

)]−1

.

Hence, E[C] is a multivariate function of x̂k+1|k and x̂k|k, as we’d expect.

4.3 Examples

4.3.1 Zero-Level Upcrossings of a Zero-Mean Stationary Gaussian Ran-

dom Sequence

For the expected number of zero-level upcrossings of a zero-mean stationary Gaussian

random sequence, there is no specific example required in order to determine the quantitative or

qualitative nature of approximation error. This is evident by observing Fig. 4.2, shown again in Fig.

4.3 for convenience. Table 4.1 shows the quantification of approximation error at specific values of

ρ1, where f(ρ1) = 1
4 − 1

2π arcsin(ρ1), and f̂(ρ1) =
√

2(1−ρ1)

2π .

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

ρ
1

Expected number of upcrossings in 1 time interval

1/2 (2−2 ρ)1/2/π
 (discretization)                       

1/4−1/2 asin(ρ)/π
 (discrete)                         

Figure 4.3: Discretization vs. Exact Discrete Level Upcrossings (Courtesy Repeat)
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ρ1 |f(ρ1)− f̂(ρ1)|
-1 0.1817

-0.5 0.0577
0 0.0249

0.5 0.0075
0.75 0.0025
0.9 6.0689× 10−4

0.95 2.121× 10−4

0.99 1.88× 10−5

0.999 5.9327× 10−7

Table 4.1: Table of Approximation Error for E[C]

We therefore see that for this simple case, the approximation error is negligible for systems

that have the property of ρ1 ' 0.9.

4.3.2 Level Upcrossings of a Stationary Gaussian Random Sequence

For the case in which computing the expected number of non-zero level upcrossings of a

non-zero mean stationary Gaussian random sequence is desired, a specific example is required to

demonstrate the quantitative and qualitative nature of approximation error. The example to be used

in studying the approximation error characteristics of the expected number of level-crossings for the

non-zero level and non-zero mean case was discussed in Sec. 3.3.2. Recall the measurement noise was

modelled in this section, and that the only reason we were concerned with it was to perform Kalman

filtering and prediction. Furthermore, the original continuous time model and level-crossing formulae

used by Federspiel [19, 22] do not account for measurement noise. Therefore, let us disregard the

measurement noise in our current example.

It is instructive to provide an illustration as to how the expected number of complaints

varies with the autocorrelation, as we saw with the simple case before in Fig. 4.3. Let’s choose the

same sampling interval, Ts = 20 min, as was used in Sec. 3.3.2 as a fundamental parameter. Varying

the autocorrelation of the differences between the complaint and building processes artificially then

yields Fig. 4.4. This illustrates the sum of the expected number of cold and hot complaints at
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the two peak values (mean of TH and TL) as a function of ρh. Here, TH and TL are the hot and

cold complaint level processes, respectively. Also, ρh is the one-step autocorrelation of the process

difference, and zH = TB − TH , where TB is the building temperature process.

−1 −0.5 0 0.5 1
0

0.5

1

ρ
h
 (Hot complaint correlation)

Expected # Complaints at 50.43 and 91

Discrete (Exact)
Discretization (Approx)

Figure 4.4: Peak Expected Complaints vs. hot correlation, ρh

In Fig. 4.4 we see how the approximation improves with increasing ρh, just as before

in Fig. 4.3. However, it may be more intuitive and useful to get an idea of what happens to

the approximations as we vary the sampling interval over a range of values in lieu of artificially

varying ρh. It is also important to demonstrate how well both discrete versions of the cost function

approximate the continuous cost function with decreased sampling interval size. The continuous

complaint level and building temperature dynamics are truly what the original model was meant to

characterize.

As the sampling interval decreases, the continuous cost function acts a limiting function

for both discrete cost functions. This is evident in Fig. 4.5, where several cost functions are shown

explicitly for different values of ρh. The cost functions illustrated in this figure are shown for a fixed

complaint frequency. Alternatively, Figs. 4.6 and 4.7 show the resulting hot and cold cost function

values evaluated at peaks on the bottom two graphs of each figure, expressed as a function of the
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autocorrelation ρh and ρl, respectively. Fig. 4.7 is based on the same data shown in Fig. 4.6, but the

range of the y-axis for the bottom two graphs is limited in Fig. 4.7, to illustrate more detail. It is

evident that when ρ1 → 1, both discrete versions of the peak cost function approach the continuous

result. In fact, we can also see that the bottom two graphs mirror the same characteristic as in Figs.

4.4 and 4.3 of the discretization approximation approaching the exact discrete result as ρ1 → 1.

It is clear from the data labels provided in the bottom two graphs of Figs. 4.6 and 4.7

that decreasing the sampling interval has the same effect as increasing the autocorrelation. For

convenience, we’ve also shown the autocorrelation as a function of the sampling interval on the top

two graphs in both figures, so we can get an idea of the monotonicity of ρh(Ts) and ρl(Ts). This

also illustrates the inverse relationship between ρh(Ts), ρl(Ts) and the sampling interval, Ts.
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Figure 4.5: Cost Function Approximations for Expected Complaints/week vs. µTB
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Figure 4.6: Approximation Summary: ρ(Ts) and Peak E[C] vs. ρ
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Figure 4.7: Approximation Summary Detail: ρ(Ts) and Peak E[C] vs. ρ

If the measurement noise had been modelled, there would have been an extreme bias
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introduced for small sampling intervals due to reasons discussed in Sec. 3.3.2. Therefore, we shall

only consider modelling measurement noise for implementation in future work when it is required

for estimation of the state via Kalman filtering. When implemented, the sampling interval should be

selected such that it is large enough to prevent biasing the results, but small enough to reasonably

approximate the exact discrete and continuous-time formulae. The measurement noise will then

maintain its “whiteness” due to the relative magnitude of the correlation time.

4.3.3 Level Upcrossings of a Non-Stationary Gaussian Random Sequence

Unlike the previous section, we are no longer concerned with the continuous formula for

level upcrossings of a non-stationary Gaussian random sequence. The original model and proposed

cost function developed by Federspiel [19, 22] made the assumption that the process of interest was

stationary. The main goal of the model was for use in prediction and control. Here, the discretization

of the formula for level upcrossings of a non-stationary Gaussian random sequence is mainly useful

in the following chapter, where we present an alternative alarm design metric, E[C|A].

Therefore, we will present and compare the results of level-crossings of a non-stationary

Gaussian random sequence using the exact discrete formula and the discretization approximation.

Recall from Sec. 4.2.3 that a predicted process of a stationary Gaussian random sequence is actually

non-stationary, and predictions are necessary when dealing with optimal alarm design. Furthermore,

the conditional predicted process, xk+i|k, is not stationary because the variance changes with the

length of the prediction window, i. Therefore, we use the same formulation as in the previous chap-

ter, by conditioning on all available information to obtain our prediction, via the Kalman filtering

paradigm. Recall Fig. 3.1 from the previous chapter, shown again in Fig. 4.8 for convenience.

Contour curves similar to the ones shown in Fig. 4.8 will act as the baseline example for the

expected number of level upcrossings of a non-stationary Gaussian random sequence. The contour

curves show only the heights of the actual number of level upcrossings. They must be computed

numerically since they are based upon the exact discrete formulae for the number of level-upcrossings
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Figure 4.8: Approximation to the 2D Alarm Region for Pb = 0.99

in a single time interval. Eqns. 4.48-4.50 characterize the single time interval formula necessary for

this computation, which we use without loss of generality.

g(x̂k+i, x̂k+i+1) = E[Ci|x0, . . . , xk] (4.48)

= P (xk+i < L, xk+i+1 > L|x0, . . . , xk) (4.49)

=
∫ L

−∞

∫ ∞

L

N (xi; µxi , Σxi)dxi (4.50)

where xi =




xk+i|k

xk+i+1|k



4
=




xk+i|x0, . . . , xk

xk+i+1|x0, . . . , xk


 ∈ R2

µxi =




x̂k+i|k

x̂k+i+1|k




Σxi =




V ar(xk+i|k) cov(xk+i|k, xk+i+1|k)

cov(xk+i+1|k, xk+i|k) V ar(xk+i+1|k)



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By using the semi-parametric expression derived in the previous section, shown below as

Eqns. 4.51-4.53, we can come up with a FOH approximation of the exact discrete contour curves

based on Eqns. 4.48-4.50. The equation is considered to be “semi-parametric” due to the presence

of the Φ(·) normal CDF.

E[C] ≈
[
Φ

(
Ts − µ

s

)
− Φ

(
−µ

s

)] [
φ(η(µ))

η(µ)
+ Φ(η(µ))

]
(4.51)

where µ =
Ts(L− x̂k|k)
x̂k+1|k − x̂k|k

(4.52)

and s =
1

r′(µ)
=

[
σ′(µ)
σ(µ)

(
m′(µ)
σ′(µ)

− m(µ)
σ(µ)

)]−1

(4.53)

Hence, the semi-parametric approximation for E[C] is a multivariate function of x̂k+1|k

and x̂k|k, similar to the exact discrete formula for E[Ci|x0, . . . , xk] = g(x̂k+i, x̂k+i+1) as we’d expect.

The computational effort required to solve this approximation is much less than required for the

numerical computations. The approximations will be very useful when coming up with a new alarm

design metric to presented in the subsequent chapter. In fact, when given the correct circumstances

of ρ1 ≈ 1, the contour curves may also be used to approximate the 2-dimensional alarm regions in

lieu of using the “asymptotes” as presented before. This would have an impact on any approximation

scheme presented that relied on using these asymptotes. Specifically, two approximations in the class

of optimal alarm systems would benefit from this finding: the 2-dimensional alarm system and the

multiple sub-interval approximation. However, recall from Chap. 3 that using this approximation

to perform an integration over the 2D alarm region will still have a greater computational burden

than using asymptotes. Therefore, all of the examples presented in Chap. 3, and the results to be

discussed in Chap. 7 are based upon the latter method.

As before, it is instructive to provide an illustration of the expected number of complaints

vs. the autocorrelation. Again, it is more intuitive and useful to vary the sampling interval over

a range of values in lieu of artificially varying ρh. Recall that decreasing the sampling interval has

the same effect as increasing the autocorrelation. Fig. 4.9 illustrates the contour lines of several
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cost functions shown explicitly for different values of ρh and corresponding sampling interval, Ts.

The contour plots of the cost functions of interest are now only showing the expected number

of hot complaints as opposed to both hot and cold, to simplify the curves in the graph. In the

graphs, the dotted lines represent the exact discrete numerical computations of the number of

level-upcrossings in a single time interval. The solid lines represent their first-order hold (FOH)

discretization approximations for the given sampling intervals and corresponding autocorrelations

shown.
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Figure 4.9: Contour Plots of FOH Approximations for Non-Stationary Expected Complaints

As seen in Fig. 4.9, any sampling interval of Ts ≈ 20 min or less gives a sufficiently good
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FOH approximation of the exact discrete result for computing the expected number of complaints

of a non-stationary Gaussian random sequence. Recall that this is the sampling interval used in our

example from Sec. 3.3.2. As such, the dynamics and sampling interval parameter, Ts = 20 min of

interest merit the use of this approximation for the optimal alarm design metric to be used in the

subsequent chapter.

4.4 Discussion

It is important to note that the discretizations introduced in this chapter are truly “mixed.”

This statement is meant to address the fact that the model presented in Sec. 3.3.2 actually uses a

true “sampled-data” zero-order hold discretization procedure of the continuous time model. This

discretization can be shown to be much more accurate than the very straightforward and simple ap-

proximation of Eqn. 4.8. The latter can be considered a “truncated” discretization of the derivative,

used to arrive at our discretized cost function. A more detailed explanation of these two different

procedures is provided below, and it will become clear why we’ve worded them as such. It will

also be shown how they are related, but not really the same. The so-called “sampled-data” ZOH

discretization of a state-space model was performed in Sec. 3.3.2. Recall the results shown below

again for convenience.

zk+1 = Adzk + Bdnk (4.54)

yk = Cdzk (4.55)

qk+1 = Adqk + Bduk + wk (4.56)

xk = Cdqk + vk (4.57)
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where

Ad = eAτs (4.58)

Bd = (eAτs − I)A−1B (4.59)

Cd = C (4.60)

Also recall the formula for the matrix exponential is simply a Taylor series expansion.

eAτs = I + τsA +
(τsA)2

2!
+

(τsA)3

3!
+ · · · =

∞∑
n=0

(τsA)n

n!

Note the use of the matrix exponential in defining Ad and Bd in Eqns. 4.58 and 4.59 above.

If we truncate the Taylor series using a first-order truncation, we then obtain a poor approximation

to the matrix exponential.

eAτs ≈ I + τsA

Now let’s see what happens when we find a discretized state-space system based upon the

straightforward and simple approximation of Eqn. 4.8. Let’s first start with the continuous-time

systems, as shown in Eqns. 4.61-4.64 below.

ż(t) = Az(t) + Bn(t) (4.61)

y(t) = Cz(t) (4.62)

q̇(t) = Aq(t) + Bu(t) + Bww(t) (4.63)

x(t) = Cq(t) + v(t) (4.64)

By using Eqn. 4.8, ż(t) ≈ zk+1−zk

Ts
, and q̇(t) ≈ qk+1−qk

Ts
, we can easily find an alternate

discretized state-space system. It can be found by using the simple approximation to the first

derivative above, and is clearly equivalent to the first-order Taylor series truncation in the following

equations.
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zk+1 = (I + τsA)︸ ︷︷ ︸
Ad

zk + τsB︸︷︷︸
Bd

nk

yk = C︸︷︷︸
Cd

zk

qk+1 = (I + τsA)︸ ︷︷ ︸
Ad

qk + τsB︸︷︷︸
Bd

uk + wk

xk = C︸︷︷︸
Cd

qk + vk

Note that eAτs ≈ I + τsA = Ad in the state-space equations above. Therefore, we can see

the direct relationship between the truncated discretization and the sampled data discretization via

the number of terms used in the Taylor series expansion of the matrix exponential. In fact, if we

used all of the terms of the matrix exponential, our approximation to the derivative would be exact,

then accounting for all higher order terms. However, this truncated state-space discretization is not

the one we actually use. The truncated discretization is performed only for the approximation to the

derivative used in deriving the cost function. Hence, this explains why in reality we have a “mixed

discretization.” The sampled data ZOH discretization has to do with the continuous dynamics of

the state-space model, and the truncated discretization serves the purpose of approximating the

cost function. A FOH discretization is used in lieu of the truncated ZOH discretization when

applied to the cost function characterizing level-crossing of a non-stationary Gaussian process. This

approximation is used in practice for a new optimal alarm design metric.

4.5 Conclusion

This chapter has introduced some new approximations that establish useful relationships

between discrete-time optimal control and alarm theory and continuous time-level crossing formu-

lae. Such approximations may not have been considered in the past because there currently exist

discrete-time level-crossing formula that provide exact results. However, in specific cases using these

formulae are computationally burdensome and therefore not very practical, especially for the imple-



127

mentation of real-time optimal control algorithms and optimal alarm design methods. Therefore,

this chapter has introduced some very straightforward approximations that provide an alternative

to the exact discrete-time level crossing formulae that are computationally much more favorable.

All approximations introduced are best for systems that have an autocorrelation close to 1. This

can be interpreted as any system/process that has a high data sampling rate, or a small sampling

interval.

Some other contributions include the fact that the non-stationary approximation can be

used to parameterize the alarm regions in optimal alarm design. Previously thought to be un-

parameterizable [69], when the sampling rate is sufficiently high, this approximation serves as ex-

cellent semi-parametric representation of the alarm region. In this case, no other hyperbolic or

rectangular approximations to the alarm region are required, as were used in the previous chapter.

Furthermore, we’d like to be able to see the practical use of the FOH approximation in optimal

alarm design. In the next chapter we introduce a new cost function to use in designing an optimal

alarm system when one’s primary concern is the minimization of false alarms.
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Chapter 5

Optimal Alarm Design

5.1 Introduction

Some practical issues need to be considered when an optimal alarm system is being designed

for a real engineering problem. When computing the probabilities of alarm, false alarm, and missed

detection (P (A), P (C ′|A), and P (A′|C) respectively) the prediction window often includes a number

of steps. Because of this, there are two main issues that present themselves. As explained in

Chap. 3, accurate computation of these probabilities numerically require the inclusion/exclusion

rule. Therefore, the number of terms grows exponentially with the number of steps in the prediction

window, O(2m), where m = the number of steps in the prediction window. This is only the case if

we are using the multi-dimensional method of computing such probabilities, as explained in Chap.

3. If we use the sub-interval method, then the number of terms needed grows as O(2Ns), where Ns

= the number of sub-intervals in the prediction window. These two methods are the most accurate

methods to use in computing approximations of the exact probabilities in question. Therefore,

we are faced with the curse of dimensionality, and potentially have a very long design time for a

modest-sized prediction window !

Furthermore, these probabilities also need to be computed with high accuracy, therefore the
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integration method used to compute them [27] requires a large number of sample points, extending

the design time even further. As discussed in Chap. 3, the probability of missing at least one level-

crossing over a long prediction window is very high over a large portion of the range of possible Pb

values. This is a byproduct of the fact that the analysis of detections and alarms are very sensitive

to the border probability, such that the useful range of border probabilities that the probability of

missed detection spans will be very small and short. All of this makes it very difficult to design a

robust optimal alarm system, since it is based upon probabilities that are so numerically sensitive.

5.2 Design Metrics for the Optimal Alarm System

5.2.1 Baseline Design Methods

As stated earlier, the steps required for design of an alarm system have been covered in

previous work [69, 70]. Suggestions for choosing an optimal value of Pb in the design of the alarm

system were provided in this literature. However, they tend to be based either on purely heuristic

trial-and-error approaches, or other cost functions. Alarm system metrics are defined as P (C|A)

(correct alarm) and P (A|C) (correct detection), or their complements, P (C ′|A) (false alarm, or

Type I error) and P (A′|C) (missed detection, or Type II error).

Iterative Approach

The heuristic trial-and-error approach is implemented according to the following iterative

procedure:

1. Select a desired value for the probability of correct detection, Pd.

2. Select a new value for the alarm design parameter, Pb.

3. Find the alarm region or its approximation, based on Pb.
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4. Compute the corresponding relevant alarm system metrics (operating characteristic functions),

making sure to find the value of P (A|C) corresponding to the current value of Pb.

5. Check to see if P (A|C) ≥ Pd.

6. If this inequality does not hold, return to step 2, and continue iterating until the condition is

met.

Obviously we can do better than this trial-and-error approach. This was recognized by

Svensson [69], and he gave an alternative approach, by using cost functions.

Cost Functions

For cost functions, sometimes it is easy to assign particular costs, or weights to events that

penalize the probability of alarms, false alarms, and missed detections, etc. Let’s make some basic

definitions prior to introducing a typical cost function.

P (A) = Probability of an Alarm

P (C ′|A) = Probability of a False Alarm (Type I Error Probability)

P (C) = Probability of Complaints

P (A′|C) = Probability of a Missed Detection (Type II Error Probability)

γA = Cost of an Alarm

γFA = Cost of a False Alarm

γC = Cost of Complaints

γMD = Cost of a Missed Detection

Let γ′FA = γFAP (A)

Let γ′MD = γMDP (A)
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We know that P (A), P (C ′|A), and P (A′|C), can be parameterized monotonically by Pb,

as a set of “basis functions” in some sense. This is evident from Fig. 5.1. Therefore, we can express
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Figure 5.1: Parametrization of Pb for P (A), P (C ′|A), and P (A′|C)

these alarm-based metrics as functions of Pb, as follows:

fA(Pb)
4
= P (A)

fFA(Pb)
4
= P (C ′|A)

fMD(Pb)
4
= P (A′|C)

We’ll also need to define the probability of complaints and alarm:

fCA(Pb)
4
= P (C, A)

A cost function can now be expressed as function of Pb.
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J(Pb) = γAfA(Pb) + γ′FAfFA(Pb) + γCP (C) + γ′MDfMD(Pb) (5.1)

= (γA + γFA)fA(Pb)− (γFA + γMD)fCA(Pb) + (γC + γMD)P (C)

The optimization problem is thus to find:

P opt
b = arg min

Pb

J(Pb)

Notice that Eqn. 5.1 contains a term, (γC + γMD)P (C), that is not a function of Pb, and

therefore adds no utility to the optimization problem posed. Therefore, we can define J ′(Pb)
4
=

(γA + γFA)fA(Pb)− (γFA + γMD)fCA(Pb) and reformulate the optimization problem as follows:

P opt
b = arg min

Pb

J(Pb) (5.2)

= arg min
Pb

J ′(Pb) (5.3)

= arg min
Pb

(γA + γFA)︸ ︷︷ ︸
γ1

fA(Pb)− (γFA + γMD)︸ ︷︷ ︸
γ2

fCA(Pb) (5.4)

= arg min
Pb

γ1fA(Pb)− γ2fCA(Pb) (5.5)

Hence, solving this constrained optimization problem over the values Pb ∈ [0, 1] will lead

to a tradeoff between the fewest possible alarms, and the greatest number of correct alarms, when

posed as a minimization. An example of such a cost function is shown in Fig. 5.2, based upon the

“basis functions” illustrated in Fig. 5.1. It is shown for several different cost weights of γ1, and γ2,

where γ1 + γ2 = 100 is our fixed budget, and γ1, γ2 ∈ [0, 100].

Notice by observation of Fig. 5.2 that there is only a solution to the minimization problem

when γ1 < γ2 such that P opt
b ∈ [0, 1) . This may be proven mathematically as well, by using the

fact that the cost function must have an inflection point. However, in order to complete the proof,

we need to use the conjecture that fCA(Pb) = P (C,A) and fC′A(Pb) = P (C ′, A) are convex and

monotonically decreasing. This is evident from Fig. 5.3, but much harder to prove formally.
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Because γ1 < γ2, this implies that there is a restriction on the cost of alarms in general to

be less than the cost of correct alarms. Along with this restriction, γ1 and γ2 must still be based

completely on heuristic selection. We can even modify the cost function, so that the cost weights

are not “combined,” as in the use of γ′FA = γFAP (A) and γ′MD = γMDP (A), but explicitly defined

and penalizing their respective terms, as follows:
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J(Pb) = γAfA(Pb) + γFAfFA(Pb) + γCP (C) + γMDfMD(Pb) (5.6)

⇒ J ′(Pb) = γAfA(Pb) + γFAfFA(Pb) + γMDfMD(Pb) (5.7)

So we must now solve:

P opt
b = arg min

Pb

J(Pb) (5.8)

= arg min
Pb

J ′(Pb) (5.9)

= arg min
Pb

γAfA(Pb) + γFAfFA(Pb) + γMDfMD(Pb) (5.10)

and choose γA, γFA, and γMD heuristically. However, now there are three free parameters

for heuristic selection, and the cost function will become a more complicated function of Pb. In fact,

there may be more complicated restrictions on choices of γA, γFA, and γMD, to allow for a solution

to the minimization problem such that P opt
b ∈ [0, 1). This is due to the fact that more than one

inflection point may exist, due to the additional free parameter.

Rather than using these types of cost functions that require the heuristic, restricted se-

lection of weights, let us now introduce an alternative cost function. This cost function is more

appropriate for our particular application target, because it is based upon the expected number of

complaints over a time period instead of probabilities. Furthermore, it requires no heuristic selection

of weights, and focuses on minimizing false alarms, which is more important for our application.

5.2.2 A New Optimal Alarm Design Method

One way to design the alarm system is based upon a metric that is very similar to probability

of correct alarm, P (C|A). However, instead of maximizing the probability of correct alarm, we

quantify a new metric, the expected number of complaints conditioned on alarm, E[C|A]. Recall

Examples 3 and 4 from Chap. 3. The probability of missed detection could not be lowered without
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severely compromising the probability of false alarms. As such, the cost function we introduce in

this chapter will allow us to focus on minimizing false alarms, since that has a higher priority for

our application.

Minimizing false alarms achieves the same objective as maximizing correct alarms. Since

we’re dealing with multiple complaints, the objective can be reformulated even further to maxi-

mizing the expected number of complaints conditioned on an alarm, E[C|A]. Unlike the probability

of false alarms, this can be expressed as a convex function of the border probability, and a unique

maximum can be found. Furthermore, the computational burden does not scale exponentially in

the number of time steps, hence there are no large contributions to excessive design time.

Its value as an alternative cost function in practice will be studied in earnest in Chap.

7. However, we will show that using this new cost function, E[C|A], has favorable computational

properties. Finding this metric as a function of Pb has a computational burden that scales linearly

in the number of time steps under consideration. Therefore, unlike its counterpart cost functions

based upon “basis functions,” introduced in the previous section, the design time does not suffer

from the curse of dimensionality. Although this is the case, we will find the integrals that need to be

computed are quite complex. Specifically, the integrand of the numerator of the formula for E[C|A]

shown in Eqn. 5.11 is the product of two terms: one which is the standard multivariate normal

probability distribution, and the other which quantifies the conditional expectation of the number

of complaints.

E[C|A] =

∫
ΩA
N (x̂; µx̂,Σx̂)E[C|x0, . . . , xk]dx̂

P (A)
(5.11)

Traditionally, we use a numerically robust algorithm developed by Genz [27], in order to

compute multivariate normal probabilities. However, the algorithm can be modified slightly to

accommodate the computation of expected values. In doing so, we are still faced with expressing

and computing E[C|x0, . . . , xk] cleverly. Genz’s algorithm is based on a Monte-Carlo sampling

technique, so that the E[C|x0, . . . , xk] portion of the integrand entrenches itself in the algorithm on
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the same level as the sampling. Therefore, with each new sample, the algorithm must also compute

and use this value. If this portion of the integrand is not in closed form, then this can be very

computationally expensive.

As we have shown in the previous chapter, the formula for E[C|x0, . . . , xk] in general does

not have a closed form. Only when we are dealing with a zero-level, zero-mean stationary random

process does this formula revert to closed form. Therefore, we must compute E[C|x0, . . . , xk] via

Monte Carlo integration, at each sampling step of the original Monte Carlo integration that we were

performing in the first place ! This has obvious disadvantages, both numerically and in terms of the

computational burden. As such, we can cleverly apply an approximation introduced in the previous

chapter in order to achieve a semi-parametric expression to reduce the computational burden, and

avoid having to use “recursive” Monte-Carlo integrations.

Single Interval 2D Approximation

For the two-dimensional approximation with a single interval, the formula for the cost

function shown in Eqns. 5.11 and 5.12 was derived using the rule of average conditional expectation

[57]. The state-space model introduced in Chap. 3 is used to illustrate this concept, and all remaining

approximations in this section.
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E[C|A] =

∫
ΩA
N (x̂;µx̂, Σx̂)E[C|x0, . . . , xk]dx̂

P (A)

=

∫
ΩA
N (x̂;µx̂, Σx̂)E[C|x0, . . . , xk]dx̂∫

ΩA
N (x̂; µx̂,Σx̂)dx̂

where A
4
= {x̂ ∈ ΩA ⊂ R2}

= {x̂k|k < X0, x̂k+m|k > Ym}

X0 = L−
√

Vk|kΦ−1(Pb)

Ym = L +
√

Vk+m|kΦ−1(Pb)

x̂ =




x̂k|k

x̂k+m|k


 ∈ R2

µx̂ =




Cµq

C(Amµq + (In −Am)(In −A)−1BµTB
)


 =




Cµq

Cµq




Σx̂ =




C

CAm


 (PL

ss − P̂
R

ss)




C

CAm




T

⇒ E[C|A] =

∫ X0

−∞
∫∞
Ym

N (x̂; µx̂, Σx̂)E[C|x0, . . . , xk]dx̂
∫ X0

−∞
∫∞
Ym

N (x̂;µx̂, Σx̂)dx̂
(5.12)

We have not yet addressed the issue of the portion of the integrand represented by E[C|x0, . . . , xk].

Unfortunately, if we use it in the form introduced in the previous chapter with Eqn. 5.12, we obtain

the expression below.

E[C|A] =

∫ X0

−∞
∫∞
Ym

N (x̂;µx̂, Σx̂)
[∑m−1

i=0

∫ L

−∞
∫∞

L
N (xi; µxi , Σxi)dxi

]
dx̂

∫ X0

−∞
∫∞
Ym

N (x̂; µx̂,Σx̂)dx̂

Recall µxi =




x̂k+i|k

x̂k+i+1|k


 and x̂ =




x̂k|k

x̂k+m|k


 ∈ R2

i ∈ [0,m− 1] ⇒ µxi * x̂ (5.13)

Therefore, this integral cannot be computed, due to the condition in Eqn. 5.13. However,
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the case above is for the two-dimensional approximation with a single interval. If we choose any of

the remaining optimal approximation methods, we may be able to satisfy a similar condition.

Multiple Sub-Interval Approximation

When we choose the multiple sub-interval approximation method, we can compute the

expected number of complaints conditioned on an alarm over the entire prediction window according

to the formula in Eqn. 5.14. However, this is only when the number of sub-intervals is equivalent to

the number of steps in the prediction window, Ns = m. Also notice that the inclusion/exclusion rule

is not used here, which is the basis of reducing the computational burden over the “basis function”

method. What warrants not using the inclusion/exclusion rule is that Eqn. 5.14 is not a probability

computation, and furthermore E[Ci|Ai] represents the “expected number of complaints in interval

i conditioned on an alarm in interval i.” Because the formula evaluates to a number of complaints

rather than a probability, we simply add up the expected number of complaints for all intervals. In

truth, this can be considered an extension to the approximation used with the multiple sub-interval

method, because we can’t express the real alarm region as the union of sub-interval regions as in

Eqn. 3.43. So we perform an “approximation” of sorts by integrating over the alarm region as

defined in a piecewise manner, by using Eqn. 5.14.

E[C|A] =
Ns∑

i=1

E[Ci|Ai] (5.14)

where E[Ci|Ai] =

∫
ΩAi

N (x̂i; µx̂i
,Σx̂i

)E[Ci|x0, . . . , xk]dx̂i

P (Ai)

=

∫
ΩAi

N (x̂i; µx̂i
,Σx̂i

)E[Ci|x0, . . . , xk]dx̂i∫
ΩAi

N (x̂i;µx̂i
, Σx̂i

)dx̂i
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where Ai
4
= {x̂i ∈ ΩAi

⊂ R2}

= {x̂k+si|k < Xsi
, x̂k+si+1|k > Ysi+1}

Xsi
= L−

√
Vk+si|kΦ−1(Pb)

Ysi+1 = L +
√

Vk+si+1|kΦ−1(Pb)

0 ≤ si, si+1 ≤ m ⇔ indices corresponding to endpoints of subinterval i

x̂i =




x̂k+si|k

x̂k+si+1|k


 ∈ R2

µx̂i
=




C(Asiµq + (In −Asi)(In −A)−1BµTB
)

C(Asi+1µq + (In −Asi+1)(In −A)−1BµTB
)







Cµq

Cµq




Σx̂i
=




CAsi

CAsi+1


 (PL

ss − P̂
R

ss)




CAsi

CAsi+1




T

and E[Ci|x0, . . . , xk] = P (xk+si < L, xk+si+1 > L|x0, . . . , xk) (5.15)

=
∫ L

−∞

∫ ∞

L

N (xi; µxi , Σxi)dxi

Note that Eqn. 5.15 only holds for the case when ∆si

4
= si+1 − si = 1, or in other words,

when Ns = m. This is when the number of sub-intervals in question is the maximum possible, and

the endpoints of all sub-intervals correspond to a pair of discrete time slices that are consecutive

and adjacent. We see that this is a requirement, because in general, E[Ci|x0, . . . , xk] = P (xk+si <

L, xk+si+1 > L|x0, . . . , xk) is not a valid formula for the conditional expectation for the number of

complaints. The expected number of complaints is equal to the probability only when

we are considering the span of a single time interval. This is true if we consider the event of

interest as a Bernoulli random variable. With this assumption in place, we must redefine xi; µxi , Σxi ,

as follows:
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xi =




xk+si|k

xk+si+1|k


 =




xk+i−1|x0, . . . , xk

xk+i|x0, . . . , xk


 ∈ R2

µxi =




x̂k+si|k

x̂k+si+1|k


 =




x̂k+i−1|k

x̂k+i|k




Σxi
=




V ar(xk+si|k) cov(xk+si|k, xk+si+1|k)

cov(xk+si+1|k, xk+si|k) V ar(xk+si+1|k)




=




V ar(xk+i−1|k) cov(xk+i−1|k, xk+i|k)

cov(xk+i|k, xk+i−1|k) V ar(xk+i|k)




V ar(xk+i−1|k) = C[Ai−1(PL
ss − P̂

R

ss)(A
T )i−1 + PL

ss]C
T + R

cov(xk+i−1|k, xk+i|k) = C[Ai−1P̂
R

ss(A
T )i + Lss −Ai−1Lss(AT )i−1]CT

cov(xk+i|k, xk+i−1|k) = C[AiP̂
R

ss(A
T )i−1 + Lss −Ai−1Lss(AT )i−1]CT

V ar(xk+i|k) = C[Ai(PL
ss − P̂

R

ss)(A
T )i + PL

ss]C
T + R

where Lss = ALssAT + BQBT (AT )

Therefore, to summarize the equations of interest for the new cost function metric when

considering the sub-interval approximation (Ns = m), we have the following:
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⇒ E[Ci|Ai] =

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
, Σx̂i

)
[∫ L

−∞
∫∞

L
N (xi; µxi

, Σxi
)dxi

]
dx̂i

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
, Σx̂i

)dx̂i

but now µxi
≡ x̂i !

⇒ E[Ci|Ai] =

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
, Σx̂i

)

g(x̂i)
4
=E[Ci|x0,...,xk]︷ ︸︸ ︷[∫ L

−∞

∫ ∞

L

N (xi; x̂i, Σxi)dxi

]
dx̂i

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
,Σx̂i

)dx̂i

=

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
, Σx̂i

)g(x̂i)dx̂i

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i; µx̂i
, Σx̂i

)dx̂i

Finally, E[C|A] =
Ns∑

i=1

E[Ci|Ai]

=
Ns∑

i=1

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i;µx̂i
, Σx̂i

)g(x̂i)dx̂i

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i;µx̂i
,Σx̂i

)dx̂i

(5.16)

Eqn. 5.16 is the formula for the new cost function parameterized by Pb. Notice how it scales

linearly in Ns. Unlike the probabilistic computation, there is no need for the inclusion/exclusion

rule, and therefore we do not suffer from the curse of dimensionality.

Multi-Dimensional Approximation

By using the multi-dimensional approximation method, we can also compute the expected

number of complaints over the entire prediction window according to the formula in Eqn. 5.17.

The formula is computed in consideration of the null hypothesis that tests for operating complaints

only, as defined in Chap. 3, i.e. for Eqn. 3.53. The null hypothesis that tests for both arrival and

operating complaints can be computed similarly, but the formulae are omitted. Again, as before

with the multiple sub-interval approximation, computation of E[C|A] in Eqn. 5.17 does not invoke

the inlucsion/exclusion rule for the same reasons as stated prior.

Furthermore, the true approximate alarm region as shown in Eqn. 3.53 is implemented

via an extended approximation as before with the multiple sub-interval method. The manner of

implementing this extended approximation is shown in Eqn. 5.17 with piecewise adjacent alarm
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regions, Ai−1, Ai. The adjacency is needed because multi-dimensional approximation alarm regions

are associated with a single time slice, Ai. The integrand of the formula for the numerator of

E[Ci|Ai−1, Ai], which is E[Ci|x0, . . . , xk], will be shown to be a function of both x̂k+i−1|k and x̂k+i|k.

As a result, in order to integrate over a function of these two variables/time slices, adjacent alarm

regions defining the corresponding regions of integration are required. This same logic does not

apply for the multiple sub-interval approximation method because a single alarm region is defined

with two adjacent time slices.

Recall that the example shown below is for in consideration of the null hypothesis that

tests for operating complaints only, as defined in Chap. 3, i.e. for Eqn. 3.53: A0

⋂
[
⋃m

i=1 Ai].

Consequently, the region of integration should really involve three time slices, A0, Ai−1, Ai, however,

this is not a particularly important issue due to the nature of the existing alarm region approximation.

Furthermore, this same issue is not important when considering the null hypothesis that tests for

both arrival and operating complaints.

E[C|A] =
m∑

i=1

E[Ci|Ai−1, Ai] (5.17)

where E[Ci|Ai−1, Ai] =

∫
ΩAi−1,Ai

N (x̂i; µx̂i
, Σx̂i

)E[Ci|x0, . . . , xk]dx̂i

P (Ai)

=

∫
ΩAi−1,Ai

N (x̂i; µx̂i
, Σx̂i

)E[Ci|x0, . . . , xk]dx̂i∫
ΩAi

N (x̂i; µx̂i
, Σx̂i

)dx̂i

A0
4
= x̂k|k ≤

X0︷ ︸︸ ︷
L−

√
Vk|kΦ−1(Pb)

Ai
4
= x̂k+i|k ≥ L +

√
Vk+i|kΦ−1(Pb)

︸ ︷︷ ︸
Yi

∀i ∈ 1, . . . , m

Let’s now make some clarifications of the terms used above:



143

x̂i =




x̂k+i−1|k

x̂k+i|k


 ∈ R2

µx̂i
=




C(Ai−1µq + (In −Ai−1)(In −A)−1BµTB )

C(Aiµq + (In −Ai)(In −A)−1BµTB
)







Cµq

Cµq




Σx̂i
=




CAi−1

CAi


 (PL

ss − P̂
R

ss)




CAi−1

CAi




T

and E[Ci|x0, . . . , xk] = P (xk+i−1 < L, xk+i > L|x0, . . . , xk)

=
∫ L

−∞

∫ ∞

L

N (xi; µxi
, Σxi

)dxi (5.18)

where xi =




xk+i−1|k

xk+i|k



4
=




xk+i−1|x0, . . . , xk

xk+i|x0, . . . , xk


 ∈ R2

µxi =




x̂k+i−1|k

x̂k+i|k




Σxi =




V ar(xk+i−1|k) cov(xk+i−1|k, xk+i|k)

cov(xk+i|k, xk+i−1|k) V ar(xk+i|k)




Further clarification of the terms used above:

V ar(xk+i−1|k) = C[Ai−1(PL
ss − P̂

R

ss)(A
T )i−1 + PL

ss]C
T + R

cov(xk+i−1|k, xk+i|k) = C[Ai−1P̂
R

ss(A
T )si+1 + Lss −Ai−1Lss(AT )i−1]CT

cov(xk+i|k, xk+i−1|k) = C[AiP̂
R

ss(A
T )i−1 + Lss −Ai−1Lss(AT )i−1]CT

V ar(xk+i|k) = C[Ai(PL
ss − P̂

R

ss)(A
T )i + PL

ss]C
T + R

where Lss = ALssAT + BQBT (AT )

Therefore, to summarize the equations of interest for the new cost function metric when

considering the multi-dimensional approximation, we have the following:
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E[C1|A0, A1] =

∫ X0

−∞
∫∞
Y1
N (x̂i;µx̂i

,Σx̂i
)
[∫ L

−∞
∫∞

L
N (xi;µxi ,Σxi)dxi

]
dx̂i

∫ Xsi

−∞
∫∞
Ysi+1

N (x̂i;µx̂i
,Σx̂i

)dx̂i

and E[Ci|Ai−1, Ai] =

∫∞
Yi−1

∫∞
Yi
N (x̂i; µx̂i

, Σx̂i
)
[∫ L

−∞
∫∞

L
N (xi; µxi , Σxi)dxi

]
dx̂i∫∞

Yi−1

∫∞
Yi
N (x̂i;µx̂i

, Σx̂i
)dx̂i

∀i ∈ {2, . . . , m}

Again, µxi
≡ x̂i

Now making some definitions to reduce the complexity of the equations:

⇒ E[C1|A0, A1] =

∫ X0

−∞
∫∞
Y1
N (x̂i; µx̂i

, Σx̂i
)

g(x̂i)
4
=E[Ci|x0,...,xk]︷ ︸︸ ︷[∫ L

−∞

∫ ∞

L

N (xi; x̂i, Σxi)dxi

]
dx̂i

∫ X0

−∞
∫∞
Y1
N (x̂i;µx̂i

,Σx̂i
)dx̂i

=

∫ X0

−∞
∫∞
Y1
N (x̂i; µx̂i

, Σx̂i
)g(x̂i)dx̂i∫ X0

−∞
∫∞
Y1
N (x̂i; µx̂i

, Σx̂i
)dx̂i

⇒ E[Ci|Ai−1, Ai] =

∫∞
Yi−1

∫∞
Yi
N (x̂i; µx̂i

,Σx̂i
)

g(x̂i)
4
=E[Ci|x0,...,xk]︷ ︸︸ ︷[∫ L

−∞

∫ ∞

L

N (xi; x̂i,Σxi)dxi

]
dx̂i

∫∞
Yi−1

∫∞
Yi
N (x̂i;µx̂i

, Σx̂i
)dx̂i

(5.19)

=

∫∞
Yi−1

∫∞
Yi
N (x̂i; µx̂i

,Σx̂i
)g(x̂i)dx̂i∫∞

Yi−1

∫∞
Yi
N (x̂i; µx̂i

, Σx̂i
)dx̂i

∀i ∈ {2, . . . , m}

Finally, E[C|A] =
m∑

i=1

E[Ci|Ai−1, Ai]

=

∫ X0

−∞
∫∞
Y1
N (x̂i; µx̂i

, Σx̂i
)g(x̂i)dx̂i∫ X0

−∞
∫∞
Y1
N (x̂i; µx̂i

, Σx̂i
)dx̂i

+
m∑

i=2

∫∞
Yi−1

∫∞
Yi
N (x̂i;µx̂i

, Σx̂i
)g(x̂i)dx̂i∫∞

Yi−1

∫∞
Yi
N (x̂i;µx̂i

,Σx̂i
)dx̂i

(5.20)

Again, this new cost function scales linearly, now with the number of time steps un-

der consideration, m, since we’re dealing with the multi-dimensional approximation. For Eqns.

5.16 (sub-interval) and 5.20 (multi-dimensional), the integrand of all numerators is the product of

N (x̂i; µx̂i
, Σx̂i

) and g(x̂i). The latter cannot be expressed explicitly as a function of x̂i. Recall:
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g(x̂i)
4
= E[Ci|x0, . . . , xk] =

∫ L

−∞

∫ ∞

L

N (xi; x̂i, Σxi
)dxi

It is possible to compute Eqns. 5.16 and 5.20 this way, using the “recursive” Monte Carlo

integration technique mentioned before, but at a huge computational disadvantage. One might

consider that in the derivation provided previously, (See Eqn. 5.19) we might take one extra step, and

move the “inner integration” of the numerator back out. Therefore, a four-dimensional integration

would act across the entire integrand so that we have a product of multivariate normal PDF’s in

the numerator as shown in Eqn. 5.21.

E[Ci|Ai−1, Ai] =

∫∞
Yi−1

∫∞
Yi
N (x̂i; µx̂i

, Σx̂i
)

g(x̂i)
4
=E[Ci|x0,...,xk]︷ ︸︸ ︷[∫ L

−∞

∫ ∞

L

N (xi; x̂i, Σxi)dxi

]
dx̂i

∫∞
Yi−1

∫∞
Yi
N (x̂i;µx̂i

,Σx̂i
)dx̂i

=

∫∞
Yi−1

∫∞
Yi

∫ L

−∞
∫∞

L
N (x̂i;µx̂i

,Σx̂i
)N (xi; x̂i, Σxi)dxidx̂i∫∞

Yi−1

∫∞
Yi
N (x̂i; µx̂i

, Σx̂i
)dx̂i

(5.21)

∀i ∈ {2, . . . ,m}

Unfortunately, barring any mathematical technicalities that might otherwise prevent us

from performing this integrand consolidation, the integrand of the numerator is still quite compli-

cated. It is true that the product of two multivariate normals is proportional to a multivariate

normal. However, the important thing to notice is that the integration is being performed over xi

as well as x̂i. In this case, recalling the definition of N (x; µx,Σx) when dealing with multivariate

normals, the variable of integration, x appears before the semicolon, not afterwards. The parameters

of the multivariate normal, the mean, µx, and the covariance matrix, Σx, appear afterwards.

Because x̂i is the both a variable of integration and the mean of the second multivariate

normal, the integration is not a standard one that can be computed easily with Genz’s algorithm.

This algorithm was intended to be used for multivariate normal probability computations. The

best alternative would be to use some other Monte Carlo technique to solve the integral. However,
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this would require much more effort than necessary since there is already a robust technique to

compute multivariate normal probabilities, specifically over semi-infinite half-spaces. Therefore,

unless we use an approximation, the only other way to compute the portion of the integrand given

by E[Ci|x0, . . . , xk] is to use Monte Carlo integration recursively as described previously, using the

expression of E[Ci|x0, . . . , xk] shown below.

g(x̂i)
4
= E[Ci|x0, . . . , xk] =

∫ L

−∞

∫ ∞

L

N (xi; x̂i,Σxi
)dxi

But instead, we can use the FOH discretization approximation revealed in the previous

chapter, for level-crossings of a non-stationary Gaussian process in lieu of the above:

g(x̂i)
4
= E[Ci|x0, . . . , xk] ≈

[
Φ

(
T − µ

s

)
− Φ

(
−µ

s

)] [
φ(η(µ))

η(µ)
+ Φ(η(µ))

]

where µ =
T (L− x̂k+i−1|k)
x̂k+i|k − x̂k+i−1|k

and s =
1

r′(µ)
=

[
σ′(µ)
σ(µ)

(
m′(µ)
σ′(µ)

− m(µ)
σ(µ)

)]−1

Recall φ(z) = Standard Normal PDF =
1√
2π

exp−
z2
2

and Φ(z) = Standard Normal CDF =
∫ z

−∞
φ(λ)dλ

Furthermore η(t) =
m′ − γ(t)%(t)r(t)
γ(t)

√
1− %2(t)

m′ ≈
x̂k+i|k − x̂k+i−1|k

T

γ2(t) ≈
∂bT

∂t
Σxi

∂b
∂t

%(t) ≈
σ′(t)
γ(t)

=
∂bT

∂t Σxib√
bT Σxib

r(t) ≈
bT µxi − L√

bT Σxib

and bT 4
=

[
1− t

T
t
T

]
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Because of the fact that {x̂k+i−1|k, x̂k+i|k} ⊂ x̂i, the expression g(x̂i) can now be used as

part of the integrand of Eqns. 5.16 and 5.20. These expressions are now much less computationally

intensive, because g(x̂i) can now be expressed semi-parametrically as a function of x̂i. In the next few

sections, we will review and discuss the resulting new cost function, E[C|A], that can be expressed

as a function of Pb, for all cases of interest.

5.3 Examples

In order to demonstrate the results of the theory introduced in the previous section, we

will use Examples 3 and 4 from Chap. 3, since they are of most practical interest to us. Therefore,

we shall first consider the hypothesis of operating complaints only, Example 3, using the complaint

model and relevant parameters. Recall that we use a 12-step ahead prediction window, or m = 12.

This corresponds to a 4-hour period in which operating complaints can occur either during the

morning or afternoon period of the day.

Figs. 5.4 and 5.5 show E[C|A] plotted as a function of border probability, Pb, with re-

spective P opt
b maxima shown with asterisks. The dotted line represents the FOH approximation,

and the solid line is the curve that was found by using the “recursive” Monte Carlo method. 3600

Monte Carlo Sampling points were used for the FOH approximations, and 360 were used in the

recursive Monte Carlo method. Even though 10 times more sampling points were used, the FOH

approximation results in a huge numerical and computational advantage. This is the case for all

similar results shown in this section. Note that Fig. 5.4 shows the results when approximating the

alarm region using the sub-interval method, and Fig. 5.5 show the results when approximation the

alarm region with the multi-dimensional method.

The results for the second hypothesis in Example 4 from Chap. 3 are shown in Figs. 5.6,

5.7 and 5.8. The same complaint model and relevant parameters, as specified for both arrival and

operating complaints are used. We also still use the same m = 12 step ahead prediction window as in
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Figure 5.4: Sub-Interval Approximation, Operating Complaints Only (Example 3)
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Figure 5.5: Multi-Dimensional Approximation, Operating Complaints Only (Example 3)

Example 3, and d = 3 as the number of steps prior to the start of the day. In this 1-hour period prior

to the beginning of the day, we want to predict both arrival complaints and operating complaints in

the ensuing 4-hour morning period. Fig. 5.6 shows the sub-interval approximation modelled with

upcrossings, Fig. 5.7 shows the sub-interval approximation modelled with downcrossings, and Fig.

5.8 shows the multi-dimensional approximation.
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Figure 5.6: Sub-Interval Approximation, Both Arrival & Operating Complaints Only, Upcrossing
Model (Example 4)
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Figure 5.7: Sub-Interval Approximation, Both Arrival & Operating Complaints Only, Downcrossing
Model (Example 4)

5.4 Discussion

Examining the results of the previous section, we see that the first-order hold (FOH)

computation of E[C|A] approximates the “recursive” Monte Carlo approach fairly well. Almost

all of the graphs illustrate the characteristic that the maximum of the two cost functions shown
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Figure 5.8: Multi-Dimensional Approximation, Both Arrival & Operating Complaints Only, (Exam-
ple 4)

per figure are nearly identical, regardless of the computation method. However, on immediate

inspection, it is clear that in all figures, the latter method shows more curvature. This can most

likely be attributed to the fact that the FOH approximation is simply a linear interpolation.

Even when we are computing the E[C|A] metric using complicated formulae such as Eqns.

5.16 and 5.20 as an obviously non-linear function of Pb, the “linear approximation” is still quite

evident, specifically in Figs. 5.4, 5.5, 5.6, and 5.8. The only place that this behavior is not readily

apparent is in the case where there is actually a distinction in the maximum between the two cost

functions, in Fig. 5.7. The order of magnitude of the metric, E[C|A] in Fig. 5.7, is also quite

different the other graphs. The reason for this is unknown and requires further mathematical study.

However, from a practical point of view, we can consider the sub-interval method not to be an

approximation that should be used to obtain our optimal alarm operating point to minimize false

alarms.

By looking at all of the results, we may surmise other some basic facts from a practical

standpoint. For Example 3, operating complaints only, we see that using either the sub-interval

(Fig. 5.4) or multi-dimensional (Fig. 5.5) approximation give almost the same answer in both
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the maximum value and optimal Pb value. The optimal Pb values for the sub-interval and multi-

dimensional methods are .45 and .47, respectively. For the sub-interval method, using the FOH

approximation gives a slightly different answer of .46 vs. .45. The main qualitative difference between

the sub-interval and multi-dimensional results for E[C|A] is apparent after the maximum value in

Figs. 5.4, 5.5. The reason for this can simply be attributed to the difference in the alarm regions

between using the multi-dimensional method and the sub-interval method when Ns = m = 12.

Similarly, for Example 4, both arrival and operating complaints, we see that using either

the sub-interval (upcrossing only, Fig. 5.6) or multi-dimensional (Fig. 5.8) approximation give close

to the same answer in both the minimum value and P opt
b . The optimal Pb values for the upcrossing

sub-interval and multi-dimensional methods are .45 and .5, respectively. For the upcrossing sub-

interval method, using the FOH approximation again gives a slightly different answer of .46 vs. .45.

And again, the main qualitative difference between the sub-interval and multi-dimensional results for

E[C|A] is apparent after the maximum value in Figs. 5.6 and 5.8. However, due to the anomaly in

Fig. 5.7 that illustrates the downcrossing method, the multi-dimensional method is always preferred

to the sub-interval method, and at very little additional computational cost.

It is also interesting to note that the critical P opt
b values found for the examples here

correspond to a “critical” border probability when examining the probability-based results of Chap.

3. Specifically, the case of when we use upcrossing approximations for the alarm regions in Chap.

3 correspond to points at which there is a change in slope in Type I errors. This appears to be the

same critical point in the E[C|A]-based cost functions in this chapter, where appropriate.

Aside from the huge numerical and computational advantage that there is to using the

FOH approximation instead of the “recursive” Monte Carlo method of computing the new E[C|A]

cost function, there are other important practical considerations to review. Note that no heuristics

are necessary for optimizing this new metric because there are no weights to select. Also, we want

to maximize E[C|A] as a function of Pb, as opposed to minimizing weighted cost functions as we

did previously. Recall this minimization problem involved balancing the tradeoff between the fewest
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possible alarms, and the greatest number of correct alarms, using heuristic weight selection. The

new metric, E[C|A], is very similar to probability of correct alarm, P (C|A), which we’d like to

maximize. The difference is that instead of maximizing P (C|A) (probability of correct alarms), we

are maximizing E[C|A] (expected number of complaints given an alarm).

The design point found by optimizing the E[C|A] cost function can easily be compared

to the design point found by choosing a weighted combination of the probability based metrics. In

fact, we can investigate the weights for the latter method that would result in the identical optimal

design points for both methods. In other words, we want to find the equivalent costs of γ1 and γ2

that result in identical solutions to both optimization problems as in Eqns. 5.22, 5.23:

P opt
b = arg min

Pb

γ1fA(Pb)− γ2fCA(Pb) (5.22)

= arg max
Pb

E[C|A] (5.23)

Suppose we choose an example with cost functions as shown in Fig. 5.2, based upon similar

“basis functions” illustrated in Fig. 5.1. It is shown for several different cost weights of γ1, and γ2,

where γ1 + γ2 = 100, and γ1, γ2 ∈ [0, 100]. Let us reformulate the basis functions somewhat so that

they correspond to our particular cases of interest. Furthermore, let’s assume that the total cost of

γ1 + γ2 = 100 is a monetary cost of $100.

First, let’s consider the case when P opt
b = 0.45. This corresponds to the optimal value

of E[C|A] for Example 3, whose alarm region is approximated by the sub-interval method when

Ns = m = 12. The sub-interval method will provide the basis functions fA(Pb) and fCA(Pb) when

Ns = 4 as a more computationally efficient and reasonable approximation to higher values of Ns due

to the apparent convergence in Fig. 3.13. The resulting cost function weights that yield P opt
b = 0.45

for the basis functions described are γ1 = $7.5 and γ2 = $92.5. Therefore, this implies that the

cost of alarms in general are much less than the cost of correct alarms. In other words, we place

much more of a premium on receiving spurious alarms than alarms in general. This is in qualitative
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agreement with the same quantitative objective achieved by using the E[C|A] design method.

Now, let’s again consider the case when P opt
b = 0.45, but this time corresponding to

the optimal value of E[C|A] for Example 4. This particular value of P opt
b has an alarm region

that is approximated by the “upcrossing” sub-interval method when Ns = m = 12. The sub-

interval method will again provide the basis functions fA(Pb) and fCA(Pb) when Ns = 4 as a more

computationally efficient approximation to higher values of Ns. The resulting cost function weights

that yield P opt
b = 0.45 for the basis functions described are now γ1 = $36 and γ2 = $64. Again this

implies that we place more of a premium on receiving spurious alarms than alarms that are either

correct or false, but to a lesser extent than when we are considering only operating complaints.

Perhaps this has to do with the fact that arrival complaints have a different equivalent probabilistic

interpretation than operating complaints.

At any rate, we know that these costs are only meant to serve as equivalences in the design

of the alarm system based upon the E[C|A] metric. If there were more concrete costs that could be

assigned to alarms vs. false alarms, then we could use them in lieu of this metric. However, in the

absence of such heuristically assigned costs, it may be reasonable to use this metric instead. The

ramifications of doing so, as opposed to using other types of design criteria from a more concrete

practical and simulation standpoint will be provided in Chap. 7.

5.5 Conclusion

The main conclusions to be derived from this short chapter can be summarized with the

following bullets:

• The FOH approximation is much more computationally efficient than using the “recursive”

Monte Carlo approach, and just as accurate in providing a solution to the optimal design prob-

lem of finding P opt
b = arg maxPb

E[C|A], for the upcrossing sub-interval and multi-dimensional

approximations to the alarm regions. Practically, the multi-dimensional approximation is pre-
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ferred to the sub-interval approximation design method.

• The new cost function, E[C|A], is much more computationally efficient from a design stand-

point than the cost functions that are based upon heuristically chosen weightings of basis

functions for the probabilities fA(Pb) = P (A) and fCA(Pb) = P (C,A). The computation time

of E[C|A] scales linearly with the number of steps in the time interval rather than exponen-

tially, as the basis functions do.

• The new cost function can easily be shown to provide an optimal value of P opt
b that is equiva-

lent to the value obtained by performing an optimization based upon the probabilistic “basis

function” method. Doing so, we can find what the equivalent costs would be on alarms and

false alarms, when using E[C|A]. As such, in the absence of such costs, using E[C|A], or its

FOH approximation is a much more computationally efficient alternative in the design of an

optimal alarm system.
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Chapter 6

Optimal Control

6.1 Introduction

The development of optimal control strategies for thermostat settings in commercial build-

ings has seen modest coverage in the literature [10, 12, 54]. Traditionally, optimal control algorithms

are solved by minimizing an objective function similar to the one presented in Eqn. 2.4, where

J =
∑L

k=0 RkPkTs is subject to some thermal comfort constraints. These constraints are typically

derived from ASHRAE standards, such as ASHRAE Standard 55 shown in Table 2.2. The solution

results in a trajectory of optimal zone temperature setpoints throughout the course of a 24-hour

period. The methodology for solving these optimal control problems ranges from the use of dy-

namic programming to other types of constrained nonlinear optimization techniques. The primary

goal of these algorithms is to minimize the dollar cost of energy expenditure (often including both

time-of-use and demand energy charges), while providing an acceptable range of thermal comfort

conditions.

It is of use to consider a variant of this problem, in which the cost of complaints is quantified,

as in Eqn. 2.5. Here, J =
∑L

k=0 RkPkTs + Ck, and Ck= the cost of complaints predicted by the

complaint model introduced by Federspiel [19, 21]. In this case, it is not necessary to consider
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thermal comfort as a constraint, because there is an additive term to characterize thermal comfort

via the cost of complaints. It is assumed that each complaint is associated with the dispatch of a

facility technician, therefore the response to them is unautomated. Details on computing the actual

dollar cost of complaints by choice of labor rates, etc., are documented [21, 22].

The revised cost function is therefore time-varying and unconstrained, and not in quadratic

form. The time-varying nature of the cost function can be derived from two sources. One source

is from the energy term, which uses a time-varying price signal, Rk. This clearly has obvious

implications for the burgeoning demand response research and enabling technology area in building

controls. The second source derives from the fact that the complaint-only cost function is dependent

on the time of day. Recall from Chap. 3 that arrival and operating complaints are distinctly

categorized. This importance of this distinction is also made clear in work presented by Federspiel

[19, 21, 22].

Due to the lack of quadratic form, it is not plausible to use a traditional LQ-optimal control

approach to the problem as currently posed. Although the cost function is not quadratic, the plant

under consideration is in fact linear, as it has been introduced and detailed in Chapter 3. However,

it is not possible to use this model when considering the sum of both energy and complaint costs.

This statistics-based model is based simply upon the fundamental spectral characteristics of actual

building temperature time-series data, and therefore has no model of energy consumption by an

actuator within a closed-loop feedback control system. To quantify energy costs, we need to use

a more detailed model that is based upon first principles, and not purely with statistics, as has

been introduced thus far. The model we will use is based on work that has presented previously by

the current author [46, 47]. The state-space formulation that has been used for the statistics-based

model does not need to be adjusted significantly to adopt the more complex first-principles based

model.

The problem with using this more complex higher-dimensional state-space model is due to

the curse of dimensionality. This has been verified by using the package of approximate dynamic
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programming developed by Miranda and Fackler [49]. The curse of dimensionality is a common

problem when employing dynamic programming to solve optimal control problems. The problem

stems from the fact that the computational burden and storage requirements increase exponentially

with the dimension of the system state. It has been found that the curse of dimensionality presents

a problem even when penalizing only the complaint cost and not the energy cost at all, with a

modest control horizon. This is true even considering the fact that we would still be relying on

the 2nd -order model that is derived purely from statistics. Even one additional dimension in the

cost function (therefore a 3-state cost function) invokes the curse of dimensionality. Additional

overhead from the chosen approximate dynamic programming method [49] no doubt incurs further

computational burden. The extra dimension arises from the fact the complaint-only based cost

function is time-varying for reasons stated previously.

A further use of the relevant statistics, but without any model, is to consider a purely

static optimization for the computation of a nominal baseline thermostat setting. This optimization

can be based upon the theory introduced in Chap. 4. Although the purpose of Sec. 4.3.2 was to

introduce the approximation for use in a dynamic sense, it is just as possible to use these results for

static optimization as well. In fact, as seen in Fig. 4.5, the optimal nominal baseline thermostat can

just as well be determined by use of the continuous cost function without even having to perform a

discretization in the static case. This is true because we are not seeking dynamic implementation

based upon the complaint cost as a function of a dynamic parameter, but rather a static mean.

Furthermore, it is also possible to perform a static optimization when considering energy costs as

well, as demonstrated by Federspiel [19, 21, 22].

Therefore, we will modify the cost function to in order to address the optimal control

question with a revised paradigm. Instead of developing a trajectory of optimal zone temperature

setpoints throughout the course of a 24-hour period, we will construct an optimal reference modifi-

cation policy. Under the previous paradigm, from a control theory point of view, the trajectory of

optimal zone temperature setpoints acts as feedback control in an autonomously acting closed-loop
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system. This is not specifically the method of implementation of previous studies as mentioned

earlier [10, 12, 54], but rather a natural interpretation of this paradigm when implemented on-line

in real-time. In a sense, the feedback control would close the loop, and inherently create a bang-

bang nonlinear optimal controller, whose stability and performance characteristics would need much

further study. A simple diagram of such a closed-loop system has been presented in Figure 1.1, and

its autonomous counterpart is shown in Fig. 6.1.
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Figure 6.1: Block Diagram of Autonomous System

However, under the new paradigm, we consider response to individual complaint or alarm-

based events. The cost function does not include the additive complaint cost term, but only the

square cost of energy conditioned on the type of event being responded to. In the case of alarm events,

we can think of this chapter as tying together two major themes of this thesis. One theme is all of the

work on optimal alarm theory presented thus far, with the second theme of how to respond to them in

an optimal fashion. We do this by combining optimal alarm theory with basic optimal control theory

in this chapter. This is therefore the first presentation of a new “optimal alarm-based control,” which
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potentially can have major implications for any number of applications where automated decision

and control based upon alarm signals is desired. In a sense, “alarm-based control” is an algorithm

that will take an optimal preemptive action to prevent future complaint events in the most energy-

efficient manner, based upon optimal prediction and alarm results. Therefore, the action is predictive

rather than corrective, as in response to complaint events that have already occurred. However, we

also consider corrective response to complaint events in this chapter.

The resulting control can be considered an optimal open-loop control law, rather than a

closed-loop feedback control. This is due in part to the response to events on a case-by-case basis,

but also due to the nature of the optimal control theory used to derive the algorithm, that cannot be

interpreted as closed-loop optimal feedback control. The theory that follows in the subsequent section

is based upon work by Hansson [32]. Hansson’s work has also extended more generally to response to

critical events using the closed-loop as well as open-loop control paradigm [30, 31, 32, 33]. However,

with his closed-loop control scheme, “inner loop” controllers are designed to prevent future level-

crossing events with feedback rather than acting at a supervisory level with reference modification.

There are several advantages in using this new paradigm, listed as follows:

• The formulation can now be treated as an LQ optimal control algorithm, with appropriate

approximations in place.

• The resulting control law is not autonomously acting and therefore there is no possibility for a

bang-bang nonlinear control law which may cause wild fluctuations in temperature to maintain

the control objective.

• The control uses an estimate of the state of the plant and system at the time of execution,

when the event occurs, and therefore is more suitable in an open-loop context.

• Cleanly integrates the use of state information at the time of any type of critical event, whether

it is an alarm or a complaint event. With closed-loop control, this distinction is not made.
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6.2 Optimal Reference Modification

6.2.1 State-Space Representation of Plant

Recall from the introduction that the state-space formulation used for the statistics-based

model does not need to be adjusted significantly to adopt the more complex first-principles based

model. In fact, we may use the exact same definition of the building temperature process as before

in Chap. 3 in continuous time:

q̇(t) = Aq(t) + Bu(t) + Bww(t)

x(t) = Cq(t) + v(t)

The main differences are now the state of the system, q(t), which represents the closed-

loop state, and the input to the system, u(t), which now should be replaced by r(t) + u(t). r(t) will

now act as the scalar fixed control input, and u(t) will act as the modification to that input. The

closed-loop state is comprised of the building state (qb(t) ∈ Rn), as defined by the details of the

model from [46, 47], the controller state (qc(t) ∈ R) , and the sensor state (qs(t) ∈ R) such that

q(t) ≡




qb(t)

qc(t)

qs(t)



∈ Rn+2 (6.1)

Furthermore, another difference is that in this model, we make no assumptions about the

Gaussianity or stationarity of the input disturbance vector, w(t) ∈ Rmd , where md = 2. The input

disturbance is now a vector comprised of the outside temperature, and internal heat gains due to

building occupants and equipment. Therefore, when each equation corresponding to the individual

components of the closed-loop state equation as shown in Eqn. 6.1 are discretized we obtain the

following:
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qbk+1
= Abd

qbk
+ Bbd

hk + Bwbd
wk (6.2)

qck+1 = qck
+ Tsek (6.3)

qsk+1 = Asd
qsk

+ Bsd
xk (6.4)

Some important internal variables and outputs of the closed-loop system are as follows:

hk = Kiqck
+ Kpek

xbk
= Cbd

qk

xk = Csd
qsk

+ vk

ek = rk + uk − xk

In the above, ek represents the control system error, xbk
represents the actual building

temperature, and xk represents the temperature measured by the thermostat (including sensor

measurement lag and noise). Notice a new output hk: this represents the power consumed by the

control actuator, which we are interested in quantifying for penalization in the cost function. This

“inner loop” controller is a standard PI controller with control gains Kp and Ki. When equations

6.2-6.4 are concatenated as in Eqn. 6.1, the following state-space equation results:

qk+1 = Adqk + Bd(rk + uk) + Bwd
wk + Bvd

vk (6.5)

xk = Cdqk + vk (6.6)

pk = Mdqk (6.7)

where

Ad =




Abd
Bbd

Ki −Bbd
KpCsd

01xn 1 −TsCsd

Bsd
Cbd

0 Asd




,Bd =




Bbd
Kp

Ts

0



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Bwd
=




Bwbd

01xmd

01xmd




,Bvd
=




−Bbd
Kp

−Ts

0




and

Cd =
[

01xmd
0 Csd

]

Md =
[

01xn 1 0

]

vk ∼ N (0, R)

Note that pk represents the integral term in the PI controller, which is also equivalent to

the state of the controller, qck
. This is necessary to compute the optimal control law when penalizing

energy usage.

6.2.2 Propagation of Means of State Space Equations

When formulating the optimal control law, it is also of importance to obtain the means

of the state space equations, and their conditional means. When conditioning on events, we will

use the notation [·|C] for a complaint event, and [·|A] for an alarm event. When there is no need

for distinction between the two, we will use the [·|E ] notation. The benefit of performing this will

become more clear in the next few sections, but the basic method has been derived from Hansson

[32]. Therefore, let’s make a few definitions for clarity of presentation:
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q̄k
4
= E[qk]

x̄k
4
= E[xk]

p̄k
4
= E[pk]

rk = E[rk] = E[rk|E ] = r̄

uk = E[uk] = E[uk|E ]

u2
k = E[u2

k] = E[u2
k|E ]

w̄k
4
= E[ek] = E[wk|E ]

Now taking the expectation of Eqn. 6.5 and applying the definitions above, we obtain the

following:

q̄k+1 = Adq̄k + Bd(rk + uk) + Bwd
w̄k (6.8)

x̄k = Cdq̄k (6.9)

p̄k = Mdq̄k (6.10)

For computation of the optimal control law, it will also be necessary to find the propagation

of the state and output error vectors, defined as follows:

q̃k
4
= qk − q̄k

x̃k
4
= xk − x̄k

p̃k
4
= pk − p̄k

w̃k
4
= wk − w̄k



164

Therefore,

q̃k+1 = Adq̃k + Bwd
w̃k (6.11)

x̃k = Cdq̃k + vk (6.12)

p̃k = Mdq̃k (6.13)

Finally, we must take the expectation of Eqn. 6.8, conditioned on an event, and make a

few last definitions.

q̂k|E
4
= E[q̄k|E ]

x̂k|E
4
= E[x̄k|E ] ⇒ x̂2

k|E = E[x̄2
k|E ]

p̂k|E
4
= E[p̄k|E ] ⇒ p̂2

k|E = E[p̄2
k|E ]

α̂k|E
4
= E[p̃k|E ]

β̂k|E
4
= E[p̃2

k|E ]

ξ̂k|E
4
= E[x̃k|E ]

η̂k|E
4
= E[x̃2

k|E ]

The ⇒ shown above can be proven by the assumption of stationarity. The state equations

can now be written as follows:

q̂k+1|E = f(q̂k|E , uk, k) = Adq̂k|E + Bd(rk + uk) + Bwd
w̄k (6.14)

x̂k|E = Cdq̂k|E (6.15)

p̂k|E = Mdq̂k|E (6.16)

6.2.3 Revisions to Predictions and Optimal Alarm System

With the revisions in the state-space representation of the plant, all Kalman filtering/prediction

and optimal alarm system design will be affected. Because of the change in the size of the state and
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the input disturbances, certain changes need to be clarified. The main difference, as highlighted be-

fore, was in Eqn. 6.5. In order to obtain a true first-principles based optimal alarm system, we must

use this same equation as the basis for all Kalman filtering and prediction that takes place. Recall

that the use of the standard Kalman filter makes tacit assumptions about the Gaussian nature of

input and measurement noise. Making a stationary Gaussian assumption about the measurement

noise is certainly appropriate, since we’ve performed a study on actual measurement noise from

real data in Sec. 3.3.2. However, it is more appropriate to choose measurement noise based upon

matching the model’s output to real data than based upon the measurements made in Sec. 3.3.2. It

was found that we should use R = 0.005 in lieu of R = 0.023759, although the stationary Gaussian

assumption about the measurement noise is still valid.

The input noise needs to be treated differently. The two disturbances that comprise this

vector, wk, are inherently non-stationary, and non-Gaussian. Recall that they are the outside

temperature (TMY data, Tout), and internal heat gains due to building occupants and equipment

(Q̇int). In order to make any Gaussian assumptions about the input noise, we must first “remove the

non-stationary mean” of the annual disturbance profile. In the case of the outside temperature, this

mean is obtained by filtering interpolated TMY weather data with an exponentially-weighted moving

average (EWMA) filter that has a very small forgetting factor, λ = 0.001. Although presented in

a completely different context, the details of the EMWA filter have already been provided in Eqns.

2.12-2.13. The basic formula that is used to model the internal gains is presented in Eqn. 6.17. It is

basically modelled as the linear combination of randomly phased and simulated building occupants

and equipment within a zone, based on work by Lin and Federspiel [44]. The phasing is based on an

on/off square wave with a randomized duty cycle, and the night/weekend periods are given residual

background heat with a uniformly randomized component. This background heat is also present

during the day.
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wk =




Q̇int

Tout




⇒ Q̇int = B0(1 + 0.1U) +
Nc∑

i=1

C0

2
[1 + s(ωtk + φi)] +

Np∑

i=1

B0

2
[1 + s(ωtk + φi)] (6.17)

where

ω =
2πTs

N

N = Max on-time = 8 hrs.

φi = NpU(−1)bUe

s(δ) = Square Wave =





1 δ ∈ U× 100 duty cycle

−1 δ ∈ (1− U)× 100 duty cycle

Nc = Number of computers/equipment pieces in zone

Np = Number of building occupants in zone

B0 = Typical heat generated by a single building occupant = 100 Watts

C0 = Typical heat generated by a single computer = 140 Watts

U = random number from uniform distribution

It is possible to compute the expected internal heat gain throughout the course of a year,

which on nights and evenings is 1.05B0, and for all other periods is 1.05B0+ C0Nc+B0Np

2 . Now that it

is clear how to compute the non-stationary mean, w̄k, for both components of the input disturbance

wk, it is now possible to compute its covariance matrix. It is defined as W = V C(wk), and computed

by using Eqn. 6.18, which is an empirical maximum likelihood estimate of the covariance estimate

based upon the Gaussian assumption, provided in Jordan [37].

W = V C(wk)

=
∑N

k=0(wk − w̄k)(wk − w̄k)T

N
(6.18)
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The estimate is based upon an empirical sample of N simulation steps, amounting to an an-

nual profile of TMY weather and internal gain simulation and computation of non-stationary means,

w̄k. Therefore, to account for the mean and variance of the non-stationary and non-Gaussian input

disturbance using the Gaussian paradigm, we can assume that wk ∼ N (w̄k,W). By subtracting off

the non-stationary portion of the mean, w̄k to compute the covariance matrix, we are developing as

accurate a Gaussian representation of the input noise as possible.

There is one final measure that needs to be taken to ensure that the Kalman filtering and

prediction can be performed with the first-principles model to meet the Gaussian assumptions. It

has to do with the second term of Eqn. 6.5, Bd(rk + uk). We know that rk is a static reference

setting, and uk is its modification. Therefore, as far as these two terms’ effect on Kalman filtering

and Gaussianity, the first term is negligible. However for the second term, we can artificially treat

the model’s non-stationary night and weekend periods as stationary periods. Specifically, we can

account for this by assuming that uk ∼ N (0, σ2
Tout

). Because the building temperature is allowed

to float on nights and weekends, the general trend is for it to follow the outside temperature during

these periods. Therefore, we assume that the variance of the outside temperature is equivalent to

the variance of the reference modification during these periods. The zero mean assumption on uk

is used because this is only a reference modification, not the actual static reference, which has no

variance.

Given this, when simulating the real model, or running the real system as it propagates

forward according to Eqn. 6.5, the Gaussian assumptions about uk and wk are unnecessary. The

simulation will simply march forward according to the available TMY weather data and simulated

internal heat loads. However, when performing Kalman filtering and prediction for the optimal

alarm system, these assumptions will have to be made. In fact, some of the basic Kalman filter-

ing/prediction mean and covariance propagation equations will change according to these revised

assumptions. The counterpart formulae from Chap. 3 that will change are Eqns. 3.9, 3.14, and 3.19

for the predictions. The revised equations are shown in Eqns. 6.19-6.22 below.
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q̂k+1|k = Adq̂k|k + Bdr̄ + Bwd
w̄k (6.19)

PR
B = AdPR

BAT
d −AdPR

BCT
d (CdPR

BCT
d + R)−1CdPR

BAT
d + B̃dW̃B̃

T

d (6.20)

x̂k+i|k
4
= E[xk+i|x0, . . . , xk] (6.21)

= Cd(Ai
dq̂k|k + (In −Ai

d)(In −Ad)−1(Bdr̄ + Bwd
w̄k)) (6.22)

where

W̃ =




σ2
Tout

01×md

0md×1 W




B̃d =
[

Bd Bwd

]

PR
B = Solution to the DARE (Eqn. 6.20) for the Building Temperature Process

⇒ P̂
R

B = PR
B −PR

BCT
d (CdPR

BCT
d + R)−1CdPR

B

In the design of an optimal alarm system, these formulae are crucial in defining the ap-

proximations to the exact alarm regions, or the exact alarm region itself, when computing the Type

I/II error probabilities. At the implementation stage, these formulae are necessary to construct the

alarm regions based upon the predicted process values, and based upon the optimal Pb selected

at the design stage. This allows the alarms to be activated based upon the revised first-principles

model, and for a subsequent thermostat setting adjustment.

6.2.4 Revised Cost Function and The Control Law

Now it is of interest to define the cost function for the control objective. Recall that we

are now using a cost function that does not include an additive complaint cost term, but rather

quantifies the square cost of energy conditioned on the type of event being responded to. The cost

function can be written as a finite horizon control problem, with window N as follows:
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J = T 2
s E[R2

Nh2
N +

N−1∑

k=0

R2
kh2

k|E ] (6.23)

Our control problem can therefore be posed as a constrained optimization problem for

hot events (complaints or alarms), where we want to determine the optimal control sequence U∗
0 =

{u∗0, u∗1, . . . , u∗N−1}.

min
U0<0

J (6.24)

And as follows for cold events (complaints or alarms):

min
U0>0

J (6.25)

The reason for the constraints is due to the fact that we would like an increase in the

thermostat setting (uk) when there is a cold event, and a decrease in the thermostat setting (uk)

when there is a hot event. Therefore, the problem is actually a constrained input optimal LQ control

problem, as detailed in Lewis [43]. The quadratic portion of the cost function must be approximated,

due to the fact that when h2
k is expanded, the cross terms involving pk and ek prevent a viable solution

to the control problem from being obtained.

As a result, the approximation should be made as follows:

h2
k = K2

p(rk − xk)2 + K2
pu2

k + K2
i p2

k + 2K2
puk(rk − xk) + 2KiKp(rk + uk − xk)pk

≈ K2
p(rk − xk)2 + K2

pu2
k + K2

i p2
k

Eliminating the last two cross terms involving pk and ek has no significant bearing on

the cost function or the resulting control law. Only the high frequency components of h2
k are

affected by eliminating these cross terms. In fact, qualitative evidence of the feasibility of using this

approximation is provided by illustrating a plot of h2
k vs. its approximation in Figure 6.2.

To find the optimal open-loop control law, we apply the methods of optimal control as

defined in Lewis [43]. First we’ll rewrite the cost function in Eqn. 6.23 by making the definitions
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Figure 6.2: h2
k and its approximation

below, and using the approximation discussed above.

L(q̂k|E , uk, k)
4
= T 2

s R2
kK2

p

[
r2
k + u2

k + η̂k|E − 2q̂T
k|EC

T
d rk − 2(rk −Cdq̂k|E)ξ̂k|E + q̂T

k|EC
T
d Cdq̂k|E

]

+ T 2
s R2

kK2
i

[
β̂k|E + 2α̂k|EMdq̂k|E + q̂T

k|EM
T
d Mdq̂k|E

]

φ(q̂N |E , N)
4
= L(q̂N |E , uN , N)−R2

NK2
pu2

NT 2
s

⇒ J = φ(q̂N |E , N) +
N−1∑

k=0

L(q̂k|E , uk, k)

Now applying the conditions for optimality according to Lewis [43]:
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Recall state equation :

q̂k+1|E = f(q̂k|E , uk, k)

Co-state equation :

λk =

(
∂f

∂q̂k|E

)T

λk+1 +
∂L

∂q̂k|E

Input stationarity condition :

0 =
(

∂f

∂uk

)T

λk+1 +
∂L

∂uk

Boundary condition :

0 =

(
∂φ

∂q̂N |E
− λN

)T

dq̂N |E

Because of the constraints posed in Eqns. 6.24, and 6.25, we must replace the input station-

arity condition with the more general Pontryagin’s Minimum Principle. Defining the Hamiltonian

as follows: H(q̂k|E , uk, λk+1, k)
4
= L(q̂k|E , uk, k)+ λk+1f(q̂k|E , uk, k), we use Pontryagin’s Minimum

Principle to impose the constraints and deriving the optimal control law, as follows:

H(q̂∗k|E , u
∗
k, λ∗k+1, k) ≤ H(q̂∗k|E , uk,λ∗k+1, k),∀uk ∈ U

The co-state, λk, is necessary to solve the optimal control problem, which often requires

the solution to a two-point boundary value problem. In doing so, we use the fact the co-state solution

can be patterned after the formula: λk = Pkq̂N |E − bk, where bk and Pk are auxiliary sequences

(both vector and matrix, respectively) to be determined. The set U , is the admissible set, which acts

as the constraint in Eqns. 6.24, and 6.25. Therefore, for Eqn. 6.24, the admissible set U ≡ U0 < 0,

and for Eqn. 6.25, the admissible set U ≡ U0 > 0. When applying the conditions for optimality, we

obtain the following dynamic equations necessary to implement the optimal control law:
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Kalman Feedforward Gain :

Kf
k = (BT

d Pk+1Bd + 2T 2
s R2

kK2
p)−1BT

d

Kalman Feedback Gain :

Kb
k = (BT

d Pk+1Bd + 2T 2
s R2

kK2
p)−1BT

d Pk+1Ad

⇒ Kb
k = Kf

kPk+1Ad

Dynamic Riccati Equation :

Pk = AT
d Pk+1Ad −AT

d Pk+1B(2T 2
s R2

kK2
p + BT

d Pk+1Bd)−1BT
d Pk+1Ad

+2T 2
s R2

k(K2
pC

T
d Cd + K2

i M
T
d Md)

⇒ Pk = AT
d Pk+1(Ad −BdKb

k) + 2T 2
s R2

k(K2
pC

T
d Cd + K2

i M
T
d Md)

Boundary Condition :

PN = 2T 2
s R2

N (K2
pC

T
d Cd + K2

i M
T
d Md)

Auxiliary Sequence :

bk = (Ad −BdKb
k)T (bk+1 −Pk+1Bwd

w̄k)

+(Gξ
k − (Kb

k)T )rk −Gξ
k ξ̂k|E −Gα

k α̂k|E

Boundary Condition :

bN = 2T 2
s R2

N

[
K2

pC
T
d (ξ̂N |E − rN ) + K2

i M
T
d α̂N |E

]

where

Gξ
k = 2T 2

s R2
kK2

pC
T
d

Gα
k = 2T 2

s R2
kK2

i M
T
d

In solving for the boundary conditions, we assume a free final state situation, therefore,
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dq̂N |E 6= 0, and λN= ∂φ
∂q̂N|E

. When applying Pontryagin’s Minimum Principle, the optimal control

law can be summarized in Eqns. 6.26-6.29.

Let dk+1
4
= − 1

2T 2
s R2

kK2
p

BT
d λk+1 (6.26)

= −Kb
kq̂k|E + Kf

k [bk+1 −Pk+1(Bdr̄ + Bwd
w̄k)] (6.27)

Let s(δ)
4
=





1 δ > 0

0 δ ≤ 0

⇒ For Cold Events :

uk = dk+1s(dk+1) (6.28)

⇒ For Hot Events :

uk = dk+1s(−dk+1) (6.29)

Therefore, the optimal control is actually nonlinear due to the step function defined as s(δ).

At the time of the event, we choose q̂k|E ≡ q̂k|k, or the optimal state estimate as the initial state

when k = 0. Furthermore, we use Eqn. 6.14 to step the optimal control law forward in time from

k = 0 to k = N . Note that the use of k = 0 here is in poor form, and it is actually a generalization

of k = kE , or the time at which a complaint or alarm event occurs.

6.2.5 Conditioning on Complaint and Alarm Information

What makes this optimal control law different than a standard optimal open-loop LQ

tracking problem is the fact that we’ve conditioned on hot or cold events. The α̂k|E and ξ̂k|E terms

of the auxiliary sequence bk add to the uniqueness of our optimal control law. The origin of these

terms can be attributed to conditioning on complaint or alarm information. We use the information

dynamically in order to integrate the state information into the control response at the time of the

event, based upon the relative complaint or alarm statistics. The “relative” statistics characterize the

mean and variance of the difference between the building temperature and the hot or cold complaint
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levels. As such, this final subsection details the dynamic computation of these two terms which use

the relative statistics, for both complaints and alarms. Complaints will be categorized into two

distinct types: arrival complaints only, and operating complaints only. Alarms will be categorized

into two types as well, defined previously in Chap. 3: both arrival and operating complaints, and

operating complaints only.

Recall the following definitions:

α̂k|E
4
= E[p̃k|E ]

ξ̂k|E
4
= E[x̃k|E ]

Now we’d like to expand these definitions to be more specific as to the type of event being

responded to. Furthermore, the indexing needs to be augmented so that the equations are more

compatible for use with the control law shown in Sec. 6.2.4. Let’s first consider the case of response

to complaints. When considering operating complaints, they can most easily be described as zero-

level upcrossings of the process zk. Recall the definition of zk from Chap. 3: zk
4
= xk − yk when

considering the interaction between the hot complaint process (yk) and the building temperature

process (xk), and zk
4
= yk−xk when considering the interaction between the cold complaint process

(yk) and the building temperature process (xk). Therefore, in general for operating complaints (Co),

Eqns. 6.30-6.35 hold true.



175

ξ̂k+i|Co

4
= E[x̃k+i|Co] (6.30)

= E[x̃k+i|zk−1 < 0, zk > 0] (6.31)

=

∫∞
0

∫ 0

−∞E[x̃k+i|x]N (x; µx,Σx)dx
∫∞
0

∫ 0

−∞N (x; µx,Σx)dx
(6.32)

α̂k+i|Co

4
= E[p̃k+i|Co] (6.33)

= E[p̃k+i|zk−1 < 0, zk > 0] (6.34)

=

∫∞
0

∫ 0

−∞E[p̃k+i|x]N (x; µx, Σx)dx
∫∞
0

∫ 0

−∞N (x; µx,Σx)dx
(6.35)

where x =




zk−1

zk




µx =








Cdqss − µy

Cdqss − µy


 hot complaint




µy −Cdqss

µy −Cdqss


 cold complaint

Σx =




CdPL
BCT

d + CPL
ssC

T + R CdPL
BAT

d CT
d + CPL

ssA
T CT

CdAdPL
BCT

d + CAPL
ssC

T CdPL
BCT

d + CPL
ssC

T + R




E[x̃k+i|x] = CdPL
B




CdAi+1
d

CdAi
d




T

Σ−1
x (x− µx)

E[p̃k+i|x] = CdPL
B




MdAi+1
d

MdAi
d




T

Σ−1
x (x− µx)

And PL
B represents the solution to the Lyapunov equation for the closed-loop building

temperature process model, such that: PL
B = AdPL

BAT
d + B̃dW̃B̃

T

d . Furthermore, µy, C, A, and

PL
ss, are all generic expressions for the mean, state-space matrices, and unconditional algebraic

state covariance for the complaint level processes, respectively. The variable qss represents the
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steady-state of the building temperature process that is computed using Eqn. 6.5. The last term

involving vk is neglected when computing the steady-state qss, since E[vk] = 0 due to our zero-mean

Gaussian measurement noise assumption of vk ∼ N (0, R). When considering arrival complaints

(Ca), we’ll describe them as two consecutive exceedances at any point during the arrival period, or

as zk−1 > 0, zk > 0. Therefore, the exact same equations apply as shown in Eqns. 6.30-6.35, with

minor modifications on the limits of integration as shown below in Eqns. 6.36-6.41.

ξ̂k+i|Ca

4
= E[x̃k+i|Ca] (6.36)

= E[x̃k+i|zk−1 > 0, zk > 0] (6.37)

=

∫∞
0

∫∞
0

E[x̃k+i|x]N (x; µx, Σx)dx∫∞
0

∫∞
0
N (x;µx, Σx)dx

(6.38)

α̂k+i|Ca

4
= E[p̃k+i|Ca] (6.39)

= E[p̃k+i|zk−1 > 0, zk > 0] (6.40)

=

∫∞
0

∫∞
0

E[p̃k+i|x]N (x; µx, Σx)dx∫∞
0

∫∞
0
N (x;µx, Σx)dx

(6.41)

Now let’s consider the case of response to alarms. The exact alarm region cannot easily be

integrated over, and therefore we should use the most accurate approximation available to us. As

such, the most correct treatment for alarms during the “operating complaint only” period should

be with the multi-dimensional approximation. Computational efficiency is not an issue due to the

fact that the design stage is assumed to be complete, and for control we are concerned only with

implementation based upon the optimally selected Pb value. Recall from Chap. 3 the approximation

to the alarm region for “operating complaints only” in Eqn. 3.53:
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Aapprox
4
= {X̂ ∈ ΩAapprox ⊂ Rm+1}

= {X̂ : A0

⋂ [
m⋃

i=1

Ai

]
}

where A0
4
= x̂k|k ≤

X0︷ ︸︸ ︷
L−

√
Vk|kΦ−1(Pb)

Ai
4
= x̂k+i|k ≥ L +

√
Vk+i|kΦ−1(Pb)

︸ ︷︷ ︸
Yi

∀i ∈ 1, . . . , m

Or, Aapprox = {X̂ : x̂k|k ≤ L−
√

Vk|kΦ−1(Pb)
⋂ [

m⋃

i=1

x̂k+i|k ≥ L +
√

Vk+i|kΦ−1(Pb)

]
}

Note that in this case, L = 0. As defined, multi-dimensional approximation of the exact

alarm region spans all of the time slices in the horizon. Therefore, its use for implementation in

the control law presented in Sec. 6.2.4 may not be feasible on a step-by-step basis. Consequently,

instead of treating the alarm region as a whole, we will split it up into pieces. The desired quantities

necessary for use in the control law for operating alarms only are shown in Eqns. 6.42-6.43.

ξ̂k+i|Ao

4
= E[x̃k+i|Ao] (6.42)

α̂k+i|Ao

4
= E[p̃k+i|Ao] (6.43)

To split the alarm region into pieces, we will consider each “step,” i.e. ξ̂k+i|Ao
or α̂k+i|Ao

to be associated with the ith step from the initial time (that the control algorithm starts at). This

ith step will correspond to the A0

⋂
Ai portion of the alarm region: A0

⋂
[
⋃m

i=1 Ai]. When i = 0,

then it reduces to just A0. We now summarize and expand on Eqns. 6.42-6.43 with Eqns. 6.44-6.49:
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ξ̂k+i|Ao

4
= E[x̃k+i|Ao] (6.44)

=





E[x̃k+i|A0] i = 0

E[x̃k+i|A0, Ai] i > 0
(6.45)

=





E[x̃k+i|ẑk|k < X0] i = 0

E[x̃k+i|ẑk|k < X0, ẑk+i|k > Yi] i > 0
(6.46)

=





∫ X0
−∞E[x̃k|ẑk|k]N

(
ẑk|k;µẑk|k ,Cd(PL

B−P̂
R

B)CT
d

)
dẑk|k

∫ X0
−∞N

(
ẑk|k;µẑk|k ,Cd(PL

B−P̂
R

B)CT
d

)
dẑk|k

i = 0

∫ X0
−∞

∫∞
Yi

E[x̃k+i|x]N (x;µx,Σx)dx
∫ X0
−∞

∫∞
Yi
N (x;µx,Σx)dx

i > 0

(6.47)

α̂k+i|Ao

4
= E[p̃k+i|Ao] (6.48)

=





∫ X0
−∞E[p̃k|ẑk|k]N

(
ẑk|k;µẑk|k ,Cd(PL

B−P̂
R

B)CT
d

)
dẑk|k

∫ X0
−∞N

(
ẑk|k;µẑk|k ,Cd(PL

B−P̂
R

B)CT
d

)
dẑk|k

i = 0

∫ X0
−∞

∫∞
Yi

E[p̃k+i|x]N (x;µx,Σx)dx
∫ X0
−∞

∫∞
Yi
N (x;µx,Σx)dx

i > 0

(6.49)
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where E[x̃k|ẑk|k] =





ẑk|k − (Cdqss − µy) hot alarm

ẑk|k − (µy −Cdqss) cold alarm

E[p̃k|ẑk|k] =





Md(PL
B−P̂

R

B)CT
d

Cd(PL
B−P̂

R

B)CT
d

(ẑk|k − (Cdqss − µy)) hot alarm

Md(PL
B−P̂

R

B)CT
d

Cd(PL
B−P̂

R

B)CT
d

(ẑk|k − (µy −Cdqss)) cold alarm

and µẑk|k = µz =





Cdqss − µy hot alarm

µy −Cdqss cold alarm

x =




ẑk|k

ẑk+i|k




µx =








Cdqss − µy

Cdqss − µy


 hot alarm




µy −Cdqss

µy −Cdqss


 cold alarm

Σx =




Cd

CdAi
d


 (PL

B − P̂
R

B)




Cd

CdAi
d




T

E[x̃k+i|x] = CdAi
d(P

L
B − P̂

R

B)




Cd

CdAi
d




T

Σ−1
x (x− µx)

E[p̃k+i|x] = MdAi
d(P

L
B − P̂

R

B)




Cd

CdAi
d




T

Σ−1
x (x− µx)

Finally, for alarms characterizing “both the arrival and the operating complaint” period, we

again use the multi-dimensional approximation. Therefore, recall from Chap. 3 the approximation

to the alarm region for both arrival and operating complaints:
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Aapprox
4
= {X̂ ∈ ΩAapprox ⊂ Rm+1}

= {X̂ :
m⋃

i=0

Ai}

= {X̂ :
m⋃

i=0

x̂k+d+i|k ≥ L +
√

Vk+d+i|kΦ−1(Pb)
︸ ︷︷ ︸

Yi

}

Note again that in this case, L = 0, and unlike the case of operating complaints only, there

is no distinction between i = 0 and i > 0. To close out this section, the final desired terms of the

control law for both arrival and operating alarms only are shown in Eqns. 6.50-6.53.

ξ̂k+i|Aa

4
= E[x̃k+i|Aa] (6.50)

=

∫∞
Yi

E[x̃k+i|x]N (x;µx, Σx)dx∫∞
Yi
N (x; µx, Σx)dx

(6.51)

E[x̃k+i|x] = CdAi
d(P

L
B − P̂

R

B)(AT
d )d+iCT

d Σ−1
x (x− µx)

and

α̂k+i|Aa

4
= E[p̃k+i|Aa] (6.52)

=

∫∞
Yi

E[p̃k+i|x]N (x;µx, Σx)dx∫∞
Yi
N (x;µx, Σx)dx

(6.53)

E[p̃k+i|x] = MdAi
d(P

L
B − P̂

R

B)(AT
d )d+iCT

d Σ−1
x (x− µx)

where x = ẑk+i+d|k

µx =





Cdqss − µy hot alarm

µy −Cdqss cold alarm

Σx = CdAd+i
d (PL

B − P̂
R

B)(AT
d )d+iCT

d
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6.3 Discussion

6.3.1 Computational Requirements

The integrals in Sec. 6.2.5 are not as computationally intensive as those that are required

during the optimal alarm design stage, which have a much higher dimension in general. This is

advantageous because the optimal control algorithm is executed on-line in real-time. However, the

same routine modified from Genz’s code [27] is used to compute them. Traditionally, this code is more

effective for higher-dimensional integrations, but can be used just as well for lower dimensional ones.

Most of the integrals from Sec. 6.2.5 are either univariate or bivariate Gaussian -based expectation

or probability computations. The univariate probabilities may be computed more basically with

the Φ(·) cumulative normal distribution function. The numerators of the univariate expectation

computations may even be found analytically.

Another computational issue in implementing the control law is its time-varying nature.

Specifically, the price of energy, Rk, is included in the control law, so the optimal control law is

demand responsive as well. This goes for any time-of-use energy scenario where the price of energy

can be predicted for at least a short finite window into the future. For most time-of-use energy rate

schemes, they vary according to a fixed schedule, based on the time of day and the season. The

rate scenario to be used for simulations in the subsequent chapter is the E-19 electrical energy tariff

offered by PG&E, as used by Federspiel in his study [21, 22]. However, as long as the price is known

over a finite prediction horizon, the control law is well-suited for real-time pricing scenarios as well.

Of the parameters used in the control law, the finite horizon to be used is of great impor-

tance. Recall that the time step used for optimal alarm deemed to be most suitable in Chap. 3 was

Ts = 20 min. A 2-hour window is sufficient time for the control or alarm response by thermostat

setting modification to be detected by building occupants, according to the dynamics of the building

temperature process. As such, we will use 6 steps for the horizon for both complaints and alarms.

Furthermore, it is a reasonable time window when considering the critical “arrival” and “operating”
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time periods under consideration. Although the optimal alarm results presented in Chap. 3 used

an m = 4-hour period, the look-ahead arrival period of d = 1-hour remains unchanged. The dis-

crepancy between the 4-hour period and the 2-hour period is not significant in terms of the issues

mentioned above. Rather, it allows for a reduced computational burden when implementing the

control algorithm.

6.3.2 Preliminary Results

Recall that the control law presented in Sec. 6.2.4 was based upon Eqn. 6.14, whose

purpose was to step the optimal control law forward in time from k = 0 to k = N . Also, at the time

of the event, we chose q̂k|E ≡ q̂k|k, or the optimal state estimate as the initial state when k = 0.

Therefore, because the control uses an estimate of the state of the plant at the time of execution, the

control law will not be identical for all events. However, it is of use to obtain an idea of the average

control response for both complaint and alarm events. As such, instead of using q̂k|E ≡ q̂k|k, we

will study the expected value of q̂k|k, which is E[q̂k|k] = qss. The steady-state is fixed, and also

acts as the initial state for simulations. We can now use this as the baseline for the average control

response to any type of event.

It is also of interest to investigate the effect of different modelling choices when implement-

ing the control law. Specifically, there are different ways to treat the mean of the input noise when

implementing the control algorithm when using Eqn. 6.14. The equation can be stepped forward in

time with disturbance previews using the following methods:

1. Use the actual stochastic input disturbance, wk.

2. Use stochastic mean, or w̄k by implementing the EWMA method for outside temperature and

expected internal heat gain as defined in Sec. 6.2.3.

3. Use a pseudo-deterministic seasonal average for w̄k (therefore this changes 4 times per year).

4. Use a deterministic annual average for w̄k.
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5. Use a deterministic average of w̄k = 0md×1.

The control and alarm responses for all of the above cases are shown in Fig. 6.3 (hot) and

Fig. 6.4 (cold). The optimal control, uk, is shown in both figures, over the desired finite horizon, and

it represents the deviation from the nominal thermostat setting, r̄. For completeness, thick solid lines

are also shown in all of the illustrations, representing the optimal setpoint modification policy without

the benefit of conditioning on complaint or alarm information. In other words, the cost function

degenerates to penalizing energy only, so the optimal strategy is to change the setpoint according to

a zero energy output, balanced against all of the other influences of energy in the model. The input

disturbances influence this zero-energy usage setpoint policy as well as the building thermal mass.

The simulation start time for all of the illustrations shown is Feb. 23, where the TMY weather

data is for Seattle, Washington. Clearly, the model of building thermal mass is sufficient to balance

against the input disturbances, in fact, it overcompensates for the outside temperature. This is due

to the fact the zero-energy usage setpoint policy is always negative, indicating a need to decrease

the temperature in order to zero out the need for any actuator energy, even in winter.

When we consider conditioning on complaint or alarm information, the remaining non-

solid lines (including the cross ‘x’ sequence) in all of the illustrations represent the optimal setpoint

modification policy for Cases # 1-4 listed above. Clearly, due to the fact that they are all fairly well

superimposed, there is no significant difference among any of these modelling nuances. Case # 5,

shown as a solid line of normal thickness is the only slightly different situation. Here it is assumed

that w̄k = 0md×1, which is the least desirable choice. An important fact to consider for all cases,

excluding the zero-energy case, is that the price of energy during the response period has a slight

change during the course of the response. This change, shown in Fig. 6.5, will significantly impact

the qualitative nature of the control response to events. Recall that the simulation start time for

the period shown in Fig. 6.5 is Feb. 23, therefore, the seasonal rates for winter are in effect.

For the cases in which we are considering response to alarms as opposed to events, the

control strategy is also heavily dependent upon the optimally selected Pb value. This concept will
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Figure 6.3: Average Responses to Hot Events and Comparison of Differing Modelling Choices

be presented in earnest in Chap. 7. For the alarm responses shown in Figs. 6.3 and 6.4, the optimal

Pb values are shown in Table 6.1 below. They have been chosen according to the minimax design

criterion, using the sub-interval method, and modelled with downcrossings when considering arrivals.

Hot Arrival & Operating 0.0042572
Cold Arrival & Operating 0.027867

Hot Operating 0.0053595
Cold Operating 0.036319

Table 6.1: Optimal Alarm System Design Pb Values

The extreme responses to the optimal alarm system shown illustrate the sensitivity of the

control algorithm to the value of Pb. Had Pb been selected otherwise, or according to some other

criteria, the response would have been significantly different. There are actually two extremes.

One extreme is shown for operating complaints only, on the lower left corner of both hot and cold

responses in Figs. 6.3 and 6.4. With the other extreme, we see for both cold operating and arrival
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Figure 6.4: Average Responses to Cold Events and Comparison of Differing Modelling Choices

alarms, on the lower right hand side of Fig. 6.4, there is no response (note the cross ‘x’ sequence).

This is due to the relatively low probability of alarm (not shown) for the corresponding value of Pb

as compared to the others in shown in Table 6.1. Therefore the respective optimal alarm system will

have a much higher sensitivity. False alarms will be quite frequent, therefore the optimal control

policy will be to temper the response with little action. This action is taken with the appropriate

cold constraint imposed. The next chapter will go into more depth concerning sensitivity issues with

regard to Pb, the different selection criteria for optimal alarm design, and practical implementation

for both alarm and control.
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Figure 6.5: Price of Electricity (Rate) During Simulation Period
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Chapter 7

Practical Implementation

7.1 Selecting a Prototype Building/Zone

Having a prototype building and zone to use as a testbed for simulations is of great impor-

tance. It will allow us to study the utility of the optimal alarm and control algorithms for important

metrics under a common framework. Suitable candidates for the prototype include the buildings

that were chosen to re-calibrate the complaint prediction model in Federspiel’s study [21, 22], giving

us the parameters in Table 2.3. These buildings were described in depth in the study, and the subset

that we will deem as candidates here will come from the same geographic location (Seattle, WA),

for ease of analysis when using TMY data in simulations. These buildings are denoted as Buildings

A, C, and F. Building A is a small 60,000 square foot laboratory/office building. Building C is

medium-sized 284,000 square foot converted industrial facility that serves primarily as office space.

Building F is a 798,000 square foot large hi-rise commercial office building in a downtown area. The

buildings all have commercial maintenance management systems that store relevant data, and the

number of zones to choose from is proportional to the square footage.

In selecting a prototype among the various buildings and zones, recall that the design of

an optimal control algorithm required a model based upon first principles. As such, an important
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criterion is that we must find a building and zone whose temperature dynamics have at the very

least a qualitative similarity to the model we’ve used as the basis for optimal control. Of course, this

model will adhere to the same scheduling requirements as would normally be in place for the real

building/zone. In consideration of this, it was found that Building C was the most suitable candi-

date among the three. Qualitatively, the model’s building temperature appears to have reasonable

similarity to a particular zone within the building, as illustrated in the week-long simulation period

shown in Fig. 7.1.
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Figure 7.1: Real vs. Modelled Building Temperature Time-Series Data

7.2 Optimal Alarm Results

7.2.1 Selecting the Optimal Pb Value and Alarm System Utility

The results presented in Chaps. 3 and 5 did not provide conclusive results on how an actual

optimal alarm system is designed and implemented in practice. This section is devoted to providing

closure on some of these issues. Recall the conclusion from Chap. 3 highlighting the importance of
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designing and implementing an optimal alarm system by selecting the optimal Pb value.

In Chap. 3, the assumed rule of thumb was that we are probably much better off missing

a possible customer complaint and saving the money in labor hours and dollars charged to respond,

than anticipating and responding to a complaint that will never happen. Therefore, it was deemed

that false alarms have a higher cost in our particular application. There were many cost functions

and other alternatives for selecting the optimal value of Pb also discussed in Chap. 3. In fact, a

new method for minimizing false alarms was introduced, by reformulating the penalty further to

maximizing the expected number of complaints conditioned on an alarm, E[C|A]. The details and

computational advantages of using this revised cost function were presented in Chap. 5.

To illustrate some of the issues with using this technique, we use the “Federspiel model”

from Chap. 3 as an example. It characterizes the building and complaint process interaction that

is of greatest interest to the thesis objective. The parameters described in Chap. 3 apply for the

case of operating complaints only (i.e. m = 4 hours, 3 sub-intervals for Type I/II error probability

approximation). Therefore, as shown in Fig. 7.2, the optimally selected Pb value is obtained by

maximizing E[C|A]. The maximum is denoted with a square, (¤), and the corresponding axes is to

the right. The false alarm and missed detection probabilities are annotated as shown as a function

of Pb, and the corresponding axis is to the left. The Type I/II error probabilities corresponding to

the selection of Pb that result from choosing this optimal maximum E[C|A] value are denoted with

asterisks. Note that the alarm probability corresponding to the selection of Pb is very small. Its

axes can also be read from the left. In fact, the alarm will rarely sound with such a small alarm

probability, and even so the missed detection probability is nearly one. Therefore, as a practical

measure, using the E[C|A] design criterion does not prove to be useful.

In order for an optimal alarm system to have any utility, that is, have any clear economic

value, there must be some way of showing how it can save money. This is possible is by considering

both energy and complaint costs. Since energy costs have implications on optimal control, we will

defer a discussion of the energy cost implications of optimal alarm systems until Sec. 7.3 is presented.
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Figure 7.2: Selecting the Optimal Pb Value

However, we also may assume that any alarms triggered by the system may result in control actions

ranging from no response to immediate response by facility managers, based on their knowledge of

the energy budget. This leaves the energy cost implications of optimal alarm systems completely

in the hands of those who set the building thermostat setting control policy. That still leaves the

question of complaint costs open, and its bearing on the utility of the optimal alarm system alone,

without any control action tied to it. We can categorize response to alarm events as being automated

or unautomated. It is important to make this distinction because if the response is unautomated,

the alarm system utility will be different than if it is automated.

If we consider the case in which the response is unautomated, it becomes clear that there

is no inherent utility in the optimal alarm system under certain conditions. Let’s assume that

facility managers will always respond to complaint or alarm events by dispatching technicians, hence

incurring labor costs regardless of the energy implications. As such, complaints must be responded
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to whether an alarm sounds or not (i.e. whether the there was a missed or correct detection). In

other words we “pay now or pay later” when it comes to the utility of an optimal alarm system. If

there were no alarm system, or if there is a missed detection with an alarm system, we will eventually

pay for the response to the complaint anyway. If there is a correct alarm, and we take action now

instead of later when the complaint actually occurs, we are still paying the labor charges for the

facility technician to respond !

However, in the case of a false alarm, any money spent on dispatching facility technicians is

money wasted. Therefore, using an optimal alarm system under these conditions may actually have

a negative utility. If we want to use this optimal alarm system, the only thing we are gaining is an

advantage in the thermal comfort of building occupants, not utility in the monetary sense. Unless

we attach a dollar value to discomfort (which has been investigated in the literature by Mozer et.al.

[52, 53]), this alarm system will not increase utility. In a sense, if the optimal alarm system is

completely decoupled from energy considerations (the optimal control problem), and acts alone in

an unautomated fashion, our original assumption of minimizing false alarms was a good one. Doing

so will mitigate the decrease in utility of the optimal alarm system.

If we consider the case in which the response is automated, the utility of the optimal alarm

system changes. In fact, simply minimizing false alarms may not be the best strategy in this case.

Automation of the response implies that when an alarm occurs, there may be some centralized

operation point as there typically are in large commercial DDC systems, where an operator can

simply “push a button” in order to initiate a “semi-automated” response to the alarm. Or the

response can by fully automated, in which there is no operator action required at all. However, in

either case, there is no need to dispatch a facility technician, and therefore no labor charges are

incurred. Therefore, the utility of the alarm system must be tied to energy considerations, because

the complaint cost as defined thus far has been eliminated via automation. Hence we defer further

discussion of this case until the optimal control results have been presented. It may still be of use to

quantify a metric that considers both complaint and energy costs as originally defined. This allows
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us to attribute some utility to complaints avoided by an automated preemptive alarm-based control

action, in order to quantify the less tangible thermal comfort advantage.

Because we will almost always need to consider energy in response to alarm events even in

the unautomated case, practically, we should try to find a way to balance missed detections with

false alarms more evenly in the selection of Pb. We know that designing the optimal alarm system

strictly to minimize false alarms results in a lack of utility. As such, we shall investigate alternate

potential cost function candidates. Although there are many, as discussed in Chap. 5, we’ll focus on

the best tradeoff between Type I/II error probabilities: the minimax design criteria. Even though

it may result in seemingly very high false alarm and missed detection rates, the optimal Pb value

can be determined very easily using this method. From Fig. 7.2 this can clearly be discerned. The

diamond shaped annotations in the figure indicate the even tradeoff between missed detection and

false alarm probabilities. Furthermore, the alarm probability, also annotated with a diamond, is not

so low that alarms will be too infrequent for any practical purposes. Therefore, for the remainder

of this section, we will use the minimax method as the primary optimal alarm design criterion.

Interpretation of the high false alarm/missed detection rate will be discussed in greater depth later

in the implementation portion of this section.

7.2.2 Practical Issues in the Design of Optimal Alarm Systems

In order to design the optimal alarm system, and to arrive at a unique solution for the

optimal Pb value, there are some basic data requirements that need to be met. When considering the

building temperature process model based purely on 2nd order statistics, we can think of obtaining

the optimal Pb as a function of those statistics in addition to the complaint level statistics. In fact,

that is actually how it is found during the design stage. The function arguments, therefore would

be the parameters in Table 2.3 and the building parameters in Table 2.4. The parameters in Table

2.3 can be found by formulae shown in Eqns. 2.6-2.9, and the remaining measurable statistics can

be computed by methods as described in Federspiel [19].
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Some of the other parameters required to design the optimal alarm system are as follows:

• The period of interest, i.e whether the null hypothesis is for operating complaints only, or both

arrival and operating complaints.

• The length of the prediction window, whose default value is the finite horizon chosen in Chap.

6 of m = 2 hours.

• If the null hypothesis is for both arrival and operating complaints, the default look-ahead

arrival period is d = 1-hour.

• Whether the design is for hot or cold events.

• The sampling interval of discretization, with a default value of Ts = 20 min.

• The number of points to use in all numerical integrations performed, default of N = 360.

• The design method of choice (i.e. Minimax vs. E[C|A] method, etc.). We will default on the

minimax choice for reasons as covered earlier in this section.

• All remaining relevant approximation parameters, according to the approximation method of

choice (i.e. 2D, sub-interval, multi-dimensional, etc.) The default method will be the sub-

interval approximation using 3 sub-intervals, and for “both arrival and operating complaints”,

the subintervals are modelled as downcrossings.

When considering design of the optimal alarm system for the first-principles-based model,

the requirements change. Recall that the main reason for considering an optimal alarm system

based on first principles was to allow for linking the optimal alarm system to optimal control. The

statistics-based model can only be implemented on a stand-alone basis, solely for unautomated

operation. The primary differences are that instead of the 2nd order building temperature statistics,

the modelling details need to be provided as arguments to the function. For example, the state-space
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matrices, the input noise covariance matrix, the steady-state, and the measurement noise variance

are the required modelling details for the design of the first-principle based optimal alarm system.

There are several ways to determine the actual optimal Pb value. The simplest way is to

perform a grid search, and selecting a fine enough resolution such that P opt
b ∈ [0, 1] yields a unique

solution. This is also heavily dependent on the design method of choice (i.e. minimax vs. E[C|A]

method, etc.) It is also possible, and simpler to use a well-known search method, i.e. a scalar

bounded nonlinear function minimization routine that can be easily coded. The method used was

an algorithm based on a golden section search and parabolic interpolation [23], for which there are

implementations in more than one language. A key observation when designing any optimal alarm

system is that the design procedure may fail to converge to a reasonable optimal Pb over the stated

search range of Pb’s. For our particular application, P opt
b is often very close to the left end of the

search range. In order to address this, we may simply reduce the search range of P opt
b ∈ [0, 1] to

some smaller range, i.e. P opt
b ∈ [0, 0.5] or P opt

b ∈ [0, 0.2].

One final consideration has to do with the real-time status of the optimal alarm design.

Because the design is not an on-line real-time implementation, there is no particular premium on

computational efficiency. There has been a recent study on optimal alarm system implementation

that is theoretically suitable for an adaptive, on-line implementation by Antunes et.al. [2]. This

implementation uses a different paradigm of Bayesian prediction, where the parameters are learned

during system execution, but it was found that there was much work to be done on improving

computational efficiency. In our case, the computing time should be kept to a minimum, even

though the design is performed off-line. Statistics should be “refreshed” on a periodic basis, and it

should not take an unreasonable amount of “off-line time” to design an optimal alarm system, based

upon these new statistics. The “refresh period” should be commensurate with significant changes in

model behavior, but can completely be based upon heuristics. A good rule of thumb for re-design

of an optimal alarm system is upon any major change of HVAC system equipment, new tenant

occupation, or change of season.
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7.2.3 Practical Issues in the Implementation of Optimal Alarm Systems

With coverage of the practical issues in the design stage complete, it is now necessary to

further the discussion by addressing implementation issues. The design stage was focused on finding

an optimal Pb value. Now, during the implementation stage we assume that the optimal Pb value

has already been selected, and all that remains is to provide the tools for the optimal alarm system’s

execution. There are several different methods for implementing an optimal alarm system, based

upon the approximations available to us. However, the primary purpose of the approximations was

to reduce the computational burden during the design stage, in lieu of simulating and “counting” to

obtain the required probabilities. As an added benefit, by making these approximations we provide

mathematical tractability to finding a semi-infinite hyper-rectangular bound on the convex alarm

region. Due to the grid search, or golden section search required during the design stage, computing

the exact alarm region or even the approximations would prove to very computationally intensive

at implementation time. This is further exacerbated by the exponential number of computations

required to find the Type I/II error probabilities due to the inlcusion/exclusion rule.

During the implementation stage, these computational difficulties are mitigated by the

fact that the alarm region itself does not need to be parameterized by the time-indexed Kalman

prediction variables. Furthermore, no probabilities actually need to be computed, since they were

most important during the design stage. Rather, we only need to know if the alarm region is entered

into for the current time step. Therefore, only a single binary decision needs to be performed,

rather than a search over an range of values having an exponential computational effort. As part

of the binary decision that needs to be made, we have several different options available to us. The

first option is to use the exact alarm condition itself as the binary test. An example would be the

condition shown as Eqn. 3.2 from Chap. 3, for operating complaints only. This would require the

numerical computation of the corresponding integral only. The computational burden of this would

not at all limit the real-time performance of the system, even if the sampling interval were a quarter

of the one used during simulations (i.e. Ts = 5 min). Most single computations of this sort take on



196

the order of hundredths of a second.

It is still possible to reduce the computational burden at implementation time even further

by using one of the approximations available during the design stage. Just as in the design stage, the

approximation chosen has a computational burden that scales with the method selected. However,

none of the methods require any numerical integration. Rather, since the approximations were all

found with rectangular or hyper-rectangular semi-infinite regions, the alarm will sound any time the

regions are entered, as defined by simple binary inequality checks. As a rule of thumb, if using these

approximations during the implementation stage, it is best to apply the same approximation that

was used during design. Moving to a more accurate method is always acceptable, however, so the

most accurate binary check would be to use the exact alarm condition.

In addition to real-time considerations of the optimal alarm system, it is also of interest

to consider the application itself. Specifically, we are interested in when the optimal alarm systems

should be activated, and/or deactivated, based upon a typical schedule and critical periods through-

out the course of a normal working day in a commercial building. A sample schedule is provided in

Table 7.1.

HVAC System start 4:30 am
Activate Arrival (& Operating) Alarm Systems 5:30 am

Start of Day/Deactivate Arrival (& Operating) Alarm Systems 7:30 am
Start of First Arrival (& Operating) Complaint Period 6:30 am
End of First Arrival (& Operating) Complaint Period 8:30 am
Start of Last Arrival (& Operating) Complaint Period 8:30 am
End of Last Arrival (& Operating) Complaint Period 10:30 am

Activate Operating Only Alarm Systems 8:30 am
Deactivate Operating Only Alarm Systems 3:00 pm

Start of First Operating Only Complaint Period 8:30 am
End of First Operating Only Complaint Period 10:30 am
Start of Last Operating Only Complaint Period 3:00 pm
End of Last Operating Only Complaint Period 5:00 pm

End of Day/HVAC System shutdown 5:00 pm

Table 7.1: Schedule of Critical Periods And Events in Prototype Building

Shown in Table 7.1 are all of the standard events that occur throughout the day. It begins
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with the HVAC system start-up, which typically happens early in the morning (4:30 am) well before

the majority of the building occupants arrive, giving the zone time to reach a reasonable level of

thermal comfort. The activation of the arrival and operating alarm systems (both hot and cold)

should take place at 5:30 am. The reason behind this is that the look-ahead arrival period is d = 1-

hour, and the finite horizon prediction window was chosen in to be m = 2 hours. Therefore, the

“first” arrival and operating complaint period spans from 6:30 am to 8:30 am. This alarm system

is continuously in operation until deactivated, and the “operating only” alarm system takes over.

So the activation period continues to operate until 7:30 am to monitor for arrival complaints during

the “last” arrival and operating complaint period spanning from 8:30 am to 10:30 am.

At 8:30 am, the operating only alarm system takes over, continuing to check for operating

complaints for the same period that the previous alarm system monitored for, spanning from 8:30

am to 10:30 am. Notice that there is no look-ahead arrival period (i.e. d = 0). In this way, there

is no loss in continuity of monitoring for complaint events, even though there is a 1-hour period

from 7:30 am to 8:30 am where there is no active alarm system in operation. The “operating only”

alarm system will continue in operation until it is deactivated at 3:00 pm, at which time it monitors

for operating complaints spanning from 3:00 pm to 5:00 pm. 5:00 pm also denotes the time for the

end of a typical workday. It is also at this time that the HVAC system is shutdown until the next

morning at 4:30 am.

It is important to note that the optimal alarm systems operating during the time periods

rely heavily on the results of Kalman filtering and prediction. Recall that the Kalman filter runs

continuously throughout the 24-hour period, so that there is no “burn in” period necessary for

convergence, other than on initial set-up. If the Kalman filter were scheduled to start and stop at the

times the respective alarm systems were activated and deactivated, there would not be enough time

for the Kalman filter to reach steady state. Furthermore, there is a second “burn-in” phenomenon

that relies on the assumptions made concerning the stationarity and Gaussianity of the Kalman

filter. This was mentioned briefly before in Chap. 3.
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Recall the “counting” method, where the statistics of Type I/II error probabilities are

obtained by using ergodicity. Essentially, simulations may be performed to obtain an estimate of

these probabilities. They are obtained by running a Kalman predictor, and counting the number

of correct/false alarms and correct/missed detections, for a long enough time until their relative

frequencies converge to limiting probability values. Hence, we can characterize this as a “burn-in”

phenomenon. However, the modelling assumptions made concerning the Kalman filter must be close

to reality. Otherwise, the convergence will with take longer than normal, or convergence to values

that are different than the theoretically computed ones. Theoretical computation in this sense refers

to the numerical computation of the Type I/II error probabilities. When a model used as the basis

for Kalman filtering and prediction is used obtain these probability via simulation, we should have

“proper convergence.” Proper convergence can be defined as convergence to the Type I/II error

probabilities that were computed via numerical integration, using a practical approximation during

the design stage corresponding to the optimal Pb value. The actual simulated model output, and

real data from a real system will inevitably produce different results than a model used as the basis

for Kalman filtering and prediction. As a result, we must investigate the sub-optimality of these

results based on the convergence properties of using real and simulated data.

Recall from the Chap. 6 that the model-based simulation simply marches forward ac-

cording to the available TMY weather data and simulated internal heat loads using Eqn. 6.5.

However, when performing Kalman filtering and prediction for the optimal alarm system, Gaussian

assumptions about uk and wk were made. The Gaussian assumption on uk accounts for the model’s

non-stationary night and weekend periods by assuming that uk ∼ N (0, σ2
Tout

). The Gaussian as-

sumption on wk accounts for the mean and variance of the non-stationary and non-Gaussian input

disturbance using the Gaussian paradigm, so that wk ∼ N (w̄k,W). Now in addition to the mod-

elling differences there are other factors that may influence the convergence properties of the Type

I/II error probabilities. One factor addresses the issue of the alarm systems’ operational schedules.

They are not continuously operating, but only at the periods listed in Table 7.1. Therefore, time to
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convergence is periodically “interrupted.” Another factor addresses alarm system implementation

issues. We may be using a different implementation than was used at the design stage. For example,

we may have designed the optimal alarm system using the sub-interval approximation method, but

during the implementation stage we used the exact alarm condition. This will also lend itself to

deviation from proper convergence.

So far, we’ve focused completely on the first-principles based model. However, if we are

considering the optimal alarm system alone, without any subsequent automated control action, the

same investigation of sub-optimality needs to take place. In this case, Kalman filtering and prediction

is based on the simple 2nd-order statistics-based model. The resulting Type I/II error probability

convergence will be studied by considering the different circumstances described thus far. Those

circumstances are summarized as follows:

• Design mismatch vs. no mismatch with the implementation method.

• Real vs. simulated data.

• With and without scheduling. “Without scheduling” implies that all optimal alarm systems

(hot/cold, both arrival & operting/operating only) will operate continuously for all 24 hours

of the day. “With scheduling” implies that the optimal alarm systems will operate according

to the schedule shown in Table 7.1.

Tables 7.2-7.29 illustrate the convergence properties, including proper convergence or the

lack of it for all of the candidate buildings described in Sec. 7.1. In these tables the optimal alarm

design was based on the simple 2nd-order statistics-based model. The design parameters were the

default ones described in the list earlier in this section. Below, Tables 7.2- 7.5 represent the results

for Building A when using the statistics-based model for simulation. The results also represent

continuous 24-hour operation of the alarm systems.
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Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 71 71

Simulated False Alarm Probability 88.73 88.73
Numerical False Alarm Probability 96.06 96.06
Simulated Missed Detection Count 109 41

Simulated Missed Detection Probability 92.66 80.49
Numerical Missed Detection Probability 95.7 95.7

Optimal Pb 0.0214 0.0214
Run Time (years) 6.09 3.25

Table 7.2: Table of Statistical Convergence for Building A, Hot Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 1123 2071

Simulated False Alarm Probability 94.3 96.43
Numerical False Alarm Probability 92.36 92.36
Simulated Missed Detection Count 1281 659

Simulated Missed Detection Probability 95 88.77
Numerical Missed Detection Probability 92.18 92.18

Optimal Pb 0.0333 0.0333
Run Time (years) 6.09 3.25

Table 7.3: Table of Statistical Convergence for Building A, Cold Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 6 40

Simulated False Alarm Probability 50 90
Numerical False Alarm Probability 99.18 99.18
Simulated Missed Detection Count 48 23

Simulated Missed Detection Probability 93.75 82.61
Numerical Missed Detection Probability 97.65 97.65

Optimal Pb 0.026 0.026
Run Time (years) 6.09 3.25

Table 7.4: Table of Statistical Convergence for Building A, Hot Operating Only Alarm System,
Statistics-Based Model

Looking at the results presented in Tables 7.2- 7.5, we see that there are 4 different tables

to represent the 4 different alarm systems needed during system operation. There are two columns

for each table, representing the two different implementation types to be compared. In this case,

the default approximation (3 sub-intervals, downcrossings for both arrival & operating complaints)

is being compared to the exact alarm region. The run time for both methods, respectively, is 6.09

and 3.25 years. Both should be sufficient time for convergence to the limiting false alarm and
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Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 246 1158

Simulated False Alarm Probability 96.34 97.75
Numerical False Alarm Probability 94.61 94.61
Simulated Missed Detection Count 742 388

Simulated Missed Detection Probability 98.79 93.3
Numerical Missed Detection Probability 94.422 94.422

Optimal Pb 0.0424 0.0424
Run Time (years) 6.09 3.25

Table 7.5: Table of Statistical Convergence for Building A, Cold Operating Only Alarm System,
Statistics-Based Model

missed detection probabilities. The numerically computed probability values are shown, and can

be compared directly to the simulated probability values. For the simulated runs, we show the

number of counts recorded as well, to provide a gauge as to the accuracy of the simulation-based

probabilities. The errors themselves are not included in the table (they can be computed accurately

for simulated results and also numerical results to a lesser extent). This is to allow for a more clear

presentation of the key information.

For the first column, when using the default approximation, we should expect that the

simulated probability valued converge to the numerically computed ones. The reason for this is that

the design was based on the same default approximation and statistics-based model that was used

during simulation. Also, the results represent continuous 24-hour operation of all alarm systems.

Demonstration of proper convergence within “ε,” however, is not likely even under these theoretically

optimal conditions. This is mainly due to the fact that the run time would have to continue ad

infinitum until the counts for missed detections and false alarms grew infinitely large. We see that

in Table 7.3, where the counts are largest, the false alarm probabilities are respectively 94.3 and 92.36

for the simulated and numerically computed results. Similarly, the missed detection probabilities

are respectively 95 and 92.18 for the simulated and numerically computed results. This is a fairly

close agreement, and looking at the remaining Tables 7.2- 7.5, where the counts are less, we see that

the agreement gets worse and worse as the counts decrease. Therefore, if we ran the simulations

for longer, the agreement between simulated and numerical computed probabilities would improve
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considerably. Hence the simulated probability results would approach the numerically computed

results within a tolerance of the error involved in each method.

Now, we’d like to determine how much the results change when we use a different imple-

mentation method. By moving to the second column in Tables 7.2- 7.5 above, we see the exact alarm

region is used in lieu of the default approximation. Therefore, the limiting probabilities achieved

by running simulations should show some sub-optimality and exhibit less than perfect convergence.

Again, we see that in Table 7.3, where the counts are largest, the false alarm probabilities are re-

spectively 96.43 and 92.36 for the simulated and numerically computed results. Similarly, the missed

detection probabilities are respectively 88.77 and 92.18 for the simulated and numerically computed

results. Therefore, the simulation-based probabilities have not changed considerably when using the

new implementation method. The differences are so small that is it is unclear whether they are due

to the combination of simple simulation and numerical integration error, or due to the anticipated

lack of proper convergence from sub-optimality.

As such, we will now turn to more significant changes that may have a greater contribution

to sub-optimality. Specifically, when we use the real building data used to design the optimal alarm

system, we will have a better measure of its practical usefulness. Below, Tables 7.6- 7.9 represent

the results for Building A when using real data. The results also represent optimal alarm system

implementations which are based upon the exact alarm region.

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 83 135

Simulated False Alarm Probability 97.59 98.52
Numerical False Alarm Probability 96.06 96.06
Simulated Missed Detection Count 33 8

Simulated Missed Detection Probability 93.94 75
Numerical Missed Detection Probability 95.7 95.7

Optimal Pb 0.0214 0.0214
Run Time (years) 3.63 9.4

Table 7.6: Table of Statistical Convergence for Building A, Hot Arrival & Operating Alarm System,
Real Data
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 1591 554

Simulated False Alarm Probability 94.34 99.1
Numerical False Alarm Probability 92.36 92.36
Simulated Missed Detection Count 655 50

Simulated Missed Detection Probability 86.26 50
Numerical Missed Detection Probability 92.18 92.18

Optimal Pb 0.0333 0.0333
Run Time (years) 3.63 9.4

Table 7.7: Table of Statistical Convergence for Building A, Cold Arrival & Operating Alarm System,
Real Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 77 28

Simulated False Alarm Probability 97.4 100
Numerical False Alarm Probability 99.18 99.18
Simulated Missed Detection Count 19 15

Simulated Missed Detection Probability 89.47 100
Numerical Missed Detection Probability 97.65 97.65

Optimal Pb 0.026 0.026
Run Time (years) 3.63 9.4

Table 7.8: Table of Statistical Convergence for Building A, Hot Operating Only Alarm System, Real
Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 698 57

Simulated False Alarm Probability 97.99 100
Numerical False Alarm Probability 94.61 94.61
Simulated Missed Detection Count 384 29

Simulated Missed Detection Probability 96.35 100
Numerical Missed Detection Probability 94.42 94.42

Optimal Pb 0.0424 0.0424
Run Time (years) 3.63 9.4

Table 7.9: Table of Statistical Convergence for Building A, Cold Operating Only Alarm System,
Real Data

As before, looking at the results presented in Tables 7.6- 7.9, we see that there are 4 different

tables to represent the 4 different alarm systems needed during system operation. There are two

columns for each table, representing the two different scheduling types to be compared. In this

case, continuous 24-hour operation of the alarm systems is being compared to the schedule provided

in Table 7.1. The run time for both methods, respectively, is 3.63 and 9.4 years. Both should

be sufficient time for convergence to the limiting false alarm and missed detection probabilities.
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However, the run-times shown are based on repeated trials of the same dataset since there is a

limited 125.82 day period available for Building A.

Recall that Tables 7.6- 7.9 represent more significant changes that may have a greater

contribution to sub-optimality. Therefore, we should expect a reasonable deviation from proper

convergence. Let’s use Table 7.7 as a guide, where the counts are largest again for the cold arrival

& operating alarm system. When considering the first column, for 24 hour continuous operation,

the false alarm probabilities are respectively 94.34 and 92.36 for the simulated and numerically

computed results. Similarly, the missed detection probabilities are respectively 86.26 and 92.18

for the simulated and numerically computed results. For the second column, when considering

scheduling of the alarm system according to Table 7.1, the false alarm probabilities are respectively

99.1 and 92.36 for the simulated and numerically computed results. Similarly, the missed detection

probabilities are respectively 50 and 92.18 for the simulated and numerically computed results.

We see that the results do not change significantly when using real data, for continuous

alarm system operation. However, when applying the realistic schedule, they do change significantly.

Unfortunately, this is more an artifact of the small number of counts (especially for missed detections

at only 50) rather than from a deviation from perfect convergence due to sub-optimality. As such

when we investigate the remaining two buildings for this particular set of circumstances, we will

increase the run-time considerably, even though it is already over 9 years in this case.

The same findings for all the other cases which have not been influenced by a small missed

detection or false alarm count can be verified. This can be done by performing the same investigation

for the remaining two candidate buildings, Buildings C & F. Therefore, Tables 7.10- 7.13 represent

the results for Building F when using the statistics-based model for simulation. These results also

represent continuous 24-hour operation of the alarm systems.
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Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 234 110

Simulated False Alarm Probability 86.75 100
Numerical False Alarm Probability 95.4 95.4
Simulated Missed Detection Count 186 135

Simulated Missed Detection Probability 83.33 100
Numerical Missed Detection Probability 93.91 93.91

Optimal Pb 0.0242 0.0242
Run Time (years) 8.18 5.27

Table 7.10: Table of Statistical Convergence for Building F, Hot Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 1459 3831

Simulated False Alarm Probability 91.84 95.09
Numerical False Alarm Probability 89.82 89.82
Simulated Missed Detection Count 1222 702

Simulated Missed Detection Probability 90.26 73.22
Numerical Missed Detection Probability 87.23 87.23

Optimal Pb 0.0344 0.0344
Run Time (years) 8.18 5.27

Table 7.11: Table of Statistical Convergence for Building F, Cold Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 120 37

Simulated False Alarm Probability 95 100
Numerical False Alarm Probability 96.82 96.82
Simulated Missed Detection Count 49 59

Simulated Missed Detection Probability 87.76 100
Numerical Missed Detection Probability 96.18 96.18

Optimal Pb 0.0336 0.0336
Run Time (years) 8.18 5.27

Table 7.12: Table of Statistical Convergence for Building F, Hot Operating Only Alarm System,
Statistics-Based Model

Observing the results for Building F, when using the statistics-based model for simulation,

and representing continuous 24-hour operation, slightly different conclusions can be made compared

to Building A. They are listed as follows:

• For the implementation method that uses the default approximation, if we ran the simula-

tions for longer, the agreement between simulated an numerical computed probabilities would

improve considerably. Hence the simulated probability results would approach the numeri-
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Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 966 2897

Simulated False Alarm Probability 95.34 96.96
Numerical False Alarm Probability 95.74 95.74
Simulated Missed Detection Count 661 404

Simulated Missed Detection Probability 93.19 78.22
Numerical Missed Detection Probability 93.37 93.37

Optimal Pb 0.0396 0.0396
Run Time (years) 8.18 5.27

Table 7.13: Table of Statistical Convergence for Building F, Cold Operating Only Alarm System,
Statistics-Based Model

cally computed results within a tolerance of the error involved in each method. In this case,

with Building F, we see that there is a particularly good agreement in Table 7.13 for the cold

operating only alarm system, even for a 661 missed detection count during an 8 year run.

• For the implementation method that uses the exact alarm region, the differences for this case

are a bit larger in Building F than with Building A. For most cases shown in Tables 7.10-

7.13, it is clear that the differences are not due to the combination of simple simulation and

numerical integration error. The only exception might be in Table 7.13, where the false alarm

probabilities are very similar. The differences in the remaining cases are most likely due to the

anticipated lack of proper convergence from sub-optimality, or not enough false alarm/missed

detection counts as in Tables 7.10 and 7.12.

Now Tables 7.14- 7.17 represent the results for Building F when using real data. These

results also represent optimal alarm system implementations which are based upon the exact alarm

region.
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 0 0

Simulated False Alarm Probability N/A N/A
Numerical False Alarm Probability 95.4 95.4
Simulated Missed Detection Count 56 8

Simulated Missed Detection Probability 100 100
Numerical Missed Detection Probability 93.91 93.91

Optimal Pb 0.0242 0.0242
Run Time (years) 5.51 9.54

Table 7.14: Table of Statistical Convergence for Building F, Hot Arrival & Operating Alarm System,
Real Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 8458 693

Simulated False Alarm Probability 92.55 94.95
Numerical False Alarm Probability 89.82 89.82
Simulated Missed Detection Count 1103 62

Simulated Missed Detection Probability 42.88 43.55
Numerical Missed Detection Probability 87.23 87.23

Optimal Pb 0.0344 0.0344
Run Time (years) 5.51 9.54

Table 7.15: Table of Statistical Convergence for Building F, Cold Arrival & Operating Alarm System,
Real Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 0 0

Simulated False Alarm Probability N/A N/A
Numerical False Alarm Probability 96.82 96.82
Simulated Missed Detection Count 21 0

Simulated Missed Detection Probability 100 N/A
Numerical Missed Detection Probability 96.18 96.18

Optimal Pb 0.0336 0.0336
Run Time (years) 5.51 9.54

Table 7.16: Table of Statistical Convergence for Building F, Hot Operating Only Alarm System,
Real Data

The run-times shown are now based on repeated trials of the same dataset with the limited

45.16 day period available for Building F. As evidenced in Tables 7.14- 7.17, there are some large

differences in the results for 24-hour operation of the alarm systems. For example, in Tables 7.14

and 7.16, for all hot alarm events, there are so few missed detections and false alarms that the

simulated probabilities are sometimes incalculable. When they are, it is often at the extreme end

of 100% for missed detections. This is largely due to the short repeated time span (45.16 days) and
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 8017 1463

Simulated False Alarm Probability 96.26 97.33
Numerical False Alarm Probability 95.74 95.74
Simulated Missed Detection Count 581 181

Simulated Missed Detection Probability 48.36 78.45
Numerical Missed Detection Probability 93.37 93.37

Optimal Pb 0.0396 0.0396
Run Time (years) 5.51 9.54

Table 7.17: Table of Statistical Convergence for Building F, Cold Operating Only Alarm System,
Real Data

therefore limited range of the real data, which is insufficient to generate enough actual complaint

events. Other major deviations include the missed detection probabilities for Tables 7.15 and 7.17,

for all cold alarm systems. Although these same large deviations are not evident in the respective

false alarm probabilities, they stem from the fact that the real data is not well characterized by its

aggregate statistical representation.

Furthermore, there is no significant improvement in the small number of counts when

using the real schedule in the second column. Much of same behavior is present as in continuous

operation, in consideration of the large deviations, extremes, and incalculability of the probabilities.

Therefore, it is still hard to discern whether the differences between simulated and numerically

computed probabilities is due to lack of sufficient run-time rather than from a deviation from perfect

convergence due to sub-optimality. Unfortunately, when investigating Building C, we may run into

the same issues because the run-time associated with the sample data set was only 82.2 days. As

a result, instead of relying on real data to investigate deviations from perfect convergence due to

sub-optimality, we will use a model that is very qualitatively similar to the real data. In this way,

we can extend the range of the values in the dataset, and use as long a run-time is necessary without

having to worry about re-using an old dataset.

We’ve left Building C for last because it is the candidate that was used as the prototype

building/zone for comparison to a first-principles model as discussed in Sec. 7.1. Therefore, we will

now perform the same analysis as was done for Buildings A and F, and follow it up with a similar
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examination when using the first-principles based model. The optimal alarm design will still be

based on the simple 2nd-order statistics-based model. However, we will follow that up by a study of

optimal alarm design that is based on the first-principles based model.

Tables 7.18- 7.21 represent the results for Building C when using the statistics-based model

for simulation. These results also represent continuous 24-hour operation of the alarm systems.

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 101 27

Simulated False Alarm Probability 87.13 81.48
Numerical False Alarm Probability 92.45 92.45
Simulated Missed Detection Count 148 58

Simulated Missed Detection Probability 91.22 91.38
Numerical Missed Detection Probability 93.67 93.67

Optimal Pb 0.0359 0.0359
Run Time (years) 11.93 8.39

Table 7.18: Table of Statistical Convergence for Building C, Hot Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 4183 9439

Simulated False Alarm Probability 84 90.21
Numerical False Alarm Probability 82.87 82.87
Simulated Missed Detection Count 4621 3410

Simulated Missed Detection Probability 85.52 72.9
Numerical Missed Detection Probability 84.77 84.77

Optimal Pb 0.0697 0.0697
Run Time (years) 11.93 8.39

Table 7.19: Table of Statistical Convergence for Building C, Cold Arrival & Operating Alarm System,
Statistics-Based Model

Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 85 46

Simulated False Alarm Probability 98.82 95.65
Numerical False Alarm Probability 98.79 98.79
Simulated Missed Detection Count 67 18

Simulated Missed Detection Probability 98.51 88.89
Numerical Missed Detection Probability 98.42 98.42

Optimal Pb 0.0326 0.0326
Run Time (years) 11.93 8.39

Table 7.20: Table of Statistical Convergence for Building C, Hot Operating Only Alarm System,
Statistics-Based Model
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Implementation Type Default Approximation Exact Alarm Region
Simulated False Alarm Count 2926 8455

Simulated False Alarm Probability 91.18 95.16
Numerical False Alarm Probability 92.5 92.5
Simulated Missed Detection Count 2482 1857

Simulated Missed Detection Probability 89.61 77.98
Numerical Missed Detection Probability 88.57 88.57

Optimal Pb 0.0742 0.0742
Run Time (years) 11.93 8.39

Table 7.21: Table of Statistical Convergence for Building C, Cold Operating Only Alarm System,
Statistics-Based Model

Observing the results for Building C, when using the statistics-based model for simulation,

and representing continuous 24-hour operation, unique conclusions can be made, and are listed as

follows:

• In this case, with Building C, we see that there is a particularly good agreement between the

simulated and numerically computed probabilities for all alarm systems. Therefore, the run

times that have been used are sufficient.

• For the implementation method that uses the exact alarm region, the differences for this case

(Building C) are more pronounced than in Building A, but about the same as in Building

F. In most cases shown in Tables 7.18- 7.21, it is clear that the differences are not due to

the combination of simple simulation and numerical integration error. This is a result of

using a long enough simulation run-time. Therefore, the differences between the simulated

and numerically computed probabilities are most likely due to the anticipated lack of proper

convergence from sub-optimality.

Tables 7.22- 7.25 represent the results for Building C when using real data. These results

also represent optimal alarm system implementations which are based upon the exact alarm region.
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 40 109

Simulated False Alarm Probability 100 100
Numerical False Alarm Probability 92.45 92.45
Simulated Missed Detection Count 40 0

Simulated Missed Detection Probability 100 N/A
Numerical Missed Detection Probability 93.67 93.67

Optimal Pb 0.0359 0.0359
Run Time (years) 9.04 24.66

Table 7.22: Table of Statistical Convergence for Building C, Hot Arrival & Operating Alarm System,
Real Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 8831 1390

Simulated False Alarm Probability 86.67 99.14
Numerical False Alarm Probability 82.87 82.87
Simulated Missed Detection Count 3982 136

Simulated Missed Detection Probability 70.44 91.18
Numerical Missed Detection Probability 84.77 84.77

Optimal Pb 0.0697 0.0697
Run Time (years) 9.04 24.66

Table 7.23: Table of Statistical Convergence for Building C, Cold Arrival & Operating Alarm System,
Real Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 41 0

Simulated False Alarm Probability 100 N/A
Numerical False Alarm Probability 98.79 98.79
Simulated Missed Detection Count 19 28

Simulated Missed Detection Probability 100 100
Numerical Missed Detection Probability 98.42 98.42

Optimal Pb 0.0326 0.0326
Run Time (years) 9.04 24.66

Table 7.24: Table of Statistical Convergence for Building C, Hot Operating Only Alarm System,
Real Data

Observing Tables 7.22- 7.25, it is evident that for continuous operation when using real

data, looping the same dataset over and over even for a long time (over 9 years) with a repeat length

of 82.2 days will not result in perfect convergence. This is due to the fact that there is a lack of

sufficient frequency content in the data to bridge the discrepancy between the aggregate statistics

used to design the alarm systems and the non-stationarity of the actual data. It is hard to make a

judgement on the realistic schedule results shown in Tables 7.22- 7.25, due to the lack of sufficient
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 7914 0

Simulated False Alarm Probability 93.69 N/A
Numerical False Alarm Probability 92.5 92.5
Simulated Missed Detection Count 2008 44

Simulated Missed Detection Probability 75.15 100
Numerical Missed Detection Probability 88.57 88.57

Optimal Pb 0.0742 0.0742
Run Time (years) 9.04 24.66

Table 7.25: Table of Statistical Convergence for Building C, Cold Operating Only Alarm System,
Real Data

false alarm and missed detection counts, with the notable exception of Table 7.23. This is true even

though the total run length was close to 25 years !

Therefore, to address this limitation, we will now present the final results for Building C

where the optimal alarm design is based on the simple 2nd-order statistics-based model. However,

the primary difference is that the actual implementation, or simulation will not be based on the same

simple 2nd-order statistics-based model used in design. In fact, the first-principles model discussed

in Sec. 7.1 that is very qualitatively similar to the real data will be used in lieu of the real data.

Consequently, there is no limitation on the span or range (of temperatures) in the data available,

as was the case with real datasets. As such, Tables 7.26- 7.29 represent the results for Building C

when the optimal alarm system implementations are based upon the exact alarm region.

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 722 7862

Simulated False Alarm Probability 100 99.95
Numerical False Alarm Probability 92.45 92.45
Simulated Missed Detection Count 18 30

Simulated Missed Detection Probability 100 86.67
Numerical Missed Detection Probability 93.67 93.67

Optimal Pb 0.0359 0.0359
Run Time (years) 3.86 43.27

Table 7.26: Table of Statistical Convergence for Building C, Hot Arrival & Operating Alarm System,
Modelled Data
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Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 19184 12719

Simulated False Alarm Probability 80.69 99.49
Numerical False Alarm Probability 82.87 82.87
Simulated Missed Detection Count 4676 271

Simulated Missed Detection Probability 20.77 76.01
Numerical Missed Detection Probability 84.77 84.77

Optimal Pb 0.0697 0.0697
Run Time (years) 3.86 43.27

Table 7.27: Table of Statistical Convergence for Building C, Cold Arrival & Operating Alarm System,
Modelled Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 772 0

Simulated False Alarm Probability 99.87 N/A
Numerical False Alarm Probability 98.79 98.79
Simulated Missed Detection Count 12 32

Simulated Missed Detection Probability 91.67 100
Numerical Missed Detection Probability 98.42 98.42

Optimal Pb 0.0326 0.0326
Run Time (years) 3.86 43.27

Table 7.28: Table of Statistical Convergence for Building C, Hot Operating Only Alarm System,
Modelled Data

Schedule Type 24-hour Table 7.1
Simulated False Alarm Count 18369 35

Simulated False Alarm Probability 91.56 94.29
Numerical False Alarm Probability 92.5 92.5
Simulated Missed Detection Count 2108 155

Simulated Missed Detection Probability 26.42 98.71
Numerical Missed Detection Probability 88.57 88.57

Optimal Pb 0.0742 0.0742
Run Time (years) 3.86 43.27

Table 7.29: Table of Statistical Convergence for Building C, Cold Operating Only Alarm System,
Modelled Data

Similar to the previous cases when using real data, there are two columns for each of

Tables 7.26- 7.29, representing the two different scheduling types to be compared. Continuous 24-

hour operation of the alarm systems in the first column is being compared to scheduled operation

in the next column. For continuous operation of the alarm system, it is clear that there are some

examples where the simulated counts were not high enough to reduce the error in the corresponding

false alarm or missed detection probability. Examples of this can be found in Table 7.26, and the
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missed detection probability computation in Table 7.28, although the deviation from the numerically

computed value is not unreasonable. However, the simulated probability counts in the remaining

tables (for the cold alarm systems) are sufficient to reduce the error involved in the probabilities. The

false alarm probabilities match fairly well for these remaining tables, however, the missed detection

rates show a very strange anomaly. It appears that the simulated missed detections probabilities

are far from their numerically computed counterparts, even though the missed detection counts are

sufficiently high to reduce simulation error. This is due to the inherent non-stationarity of the data

simulated by the model. Recall Fig. 7.1, in which the non-stationarity is quite evident. If more of

the simulation were shown, the non-stationary night and weekend periods which are obvious in Fig.

7.1 would dip down lower and lower, and then eventually back up again as the seasons change and

the outside temperature influence these “float” periods.

The influence of these non-stationary periods is clearly only present on the “cold” side,

because during the normal occupied periods, the temperature is regulated by a controller. Here, the

temperature is more “stationary”, and therefore the “hot” side will not be affected by this anomaly.

Therefore, the asymmetry in the agreements of simulated and numerically computed probability

results between hot and cold can easily be attributed to this non-stationary phenomenon. The

discrepancy between false alarm and missed detection probability agreement on the “cold” side

can be explained by the non-stationarity as well. Actual cold complaints are logged during the

unoccupied period due to continuous 24-hour operation of the alarm systems. Therefore, cold

complaints will not be missed as often as they should due to the extreme downward excursions that

take place on HVAC system shutdown. This explains the greatly reduced missed detection rate.

Now if we adhere to the schedule give in Table 7.1, this phenomenon is eliminated, and

the missed detection rates should change significantly, as seen the second column of Tables 7.27

and 7.29. The remaining results are fairly similar to the results from the first column. However,

there is a bit more deviation due to either the lack of events, a greater number of events, or due to

the sub-optimality experienced by adhering to a schedule. For Tables 7.27 and 7.29, this schedule
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operates only during stationary “operating only” periods that have a different statistical basis than

the complete modelling dataset.

Before closing out this section and moving on to a practical discussion of optimal control

in the next section, we provide the final results on optimal alarm that serve as its precursor. The

optimal alarm design for all of the results presented thus far have been based on the simple 2nd-order

statistics-based model. This has been a useful investigation for optimal alarm systems that are not

to be linked with subsequent automatic control responses. In fact, the overhead is quite less, and

no modelling is necessary, only empirical data is required. However, in order to link an automated

optimal control response, a first-principles model is necessary to design the optimal alarm system

as well as the control algorithm. As such, we’d like to present the optimal alarm results of a system

whose design was based on a first principles model.

Using the same framework as presented all along in this section, Tables 7.30-7.33 represent

the statistics of optimal alarm systems whose designs were based on a first-principles model. Recall

that certain assumptions were made in Sec. 6.2.3 of Chap. 6 in order to complete the design.

These assumptions (mainly on Gaussianity and stationarity) were different than the actual model’s

real-time implementation. Rather, they are only used during optimal alarm system design. These

discrepancies will cause sub-optimal results and therefore deviations from perfect convergence. As

such, they will be analyzed as well, and in the table a new row, “Model Type” will be added, denoted

by either “G-S Approx” for “Gaussian-Stationary Approximation, or “Real Model,” for the actual

first-principles model with the non-stationary and non-Gaussian input disturbances.
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Model Type G-S Approx Real Model Real Model
Implementation Type Default

Approximation
Default
Approximation

Exact
Alarm Region

Schedule Type 24-hour 24-hour Table 7.1
Simulated Type I Count 233 0 36

Simulated Type I Probability 100 N/A 100
Numerical Type I Probability 95.84 95.84 95.84

Simulated Type II Count 153 14 2
Simulated Type II Probability 100 100 100
Numerical Type II Probability 95.71 95.71 95.71

Optimal Pb 0.00426 0.00426 0.00426
Run Time (years) 6.85 6.85 6.85

Table 7.30: Table of Statistical Convergence for Building C, Hot Arrival & Operating Alarm System,
1st-principles

Model Type G-S Approx Real Model Real Model
Implementation Type Default

Approximation
Default
Approximation

Exact
Alarm Region

Schedule Type 24-hour 24-hour Table 7.1
Simulated Type I Count 4287 35909 3436

Simulated Type I Probability 99.93 80.02 99.45
Numerical Type I Probability 98.25 98.25 98.25

Simulated Type II Count 38 8836 30
Simulated Type II Probability 92.11 18.81 36.67
Numerical Type II Probability 98.09 98.09 98.09

Optimal Pb 0.0279 0.0279 0.0279
Run Time (years) 6.85 6.85 6.85

Table 7.31: Table of Statistical Convergence for Building C, Cold Arrival & Operating Alarm System,
1st-principles

Model Type G-S Approx Real Model Real Model
Implementation Type Default

Approximation
Default
Approximation

Exact
Alarm Region

Schedule Type 24-hour 24-hour Table 7.1
Simulated Type I Count 410 0 18

Simulated Type I Probability 100 N/A 100
Numerical Type I Probability 97.92 97.92 97.92

Simulated Type II Count 60 6 16
Simulated Type II Probability 100 100 100
Numerical Type II Probability 96.59 96.59 96.59

Optimal Pb 0.00536 0.00536 0.00536
Run Time (years) 6.85 6.85 6.85

Table 7.32: Table of Statistical Convergence for Building C, Hot Operating Only Alarm System,
1st-principles
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Model Type G-S Approx Real Model Real Model
Implementation Type Default

Approximation
Default
Approximation

Exact
Alarm Region

Schedule Type 24-hour 24-hour Table 7.1
Simulated Type I Count 3669 0 96

Simulated Type I Probability 100 N/A 93.75
Numerical Type I Probability 98.25 98.25 98.25

Simulated Type II Count 24 3869 48
Simulated Type II Probability 100 100 87.5
Numerical Type II Probability 96.83 96.83 96.83

Optimal Pb 0.0363 0.0363 0.0363
Run Time (years) 6.85 6.85 6.85

Table 7.33: Table of Statistical Convergence for Building C, Cold Operating Only Alarm System,
1st-principles

There are now three distinct columns, each representing a unique set of circumstances to

compare against each other. The first column represents a theoretically optimal simulation, where

we should expect that the simulated probability values will converge to the numerically computed

ones. The conditions are theoretically optimal because the simulated model is the same as the one

used for design, as well as the implementation type (default sub-interval approximation). Also,

the alarm systems are continuously operating on a 24-hour basis. As seen in Tables 7.30-7.33, the

simulations often need to be run for a longer time in order for the probabilities to converge on the

numerically computed values. With the exception of Table 7.31, all of the probability computations

based on simulation are at 100%. In Table 7.31, the false alarm counts are high, therefore, the false

alarm (Type I) probability agreement is the best out of all probabilities shown.

When we consider the second column, the real first-principles based model is used for

simulation, although the implementation type is still the same as was used for design. Also, the

alarm systems are still continuously operating on a 24-hour basis. When making the simple change

from the Gaussian-stationary approximation of the model to the real first-principles based model

itself, significant changes occur. All other parameters are exactly the same, even the run-time length.

However, as seen, there are still problems with running the simulation long enough due to the low

false alarm and missed detection counts for all cases except for Table 7.31, and the Type II missed
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detection count for Table 7.33. In these cases, the simulated probabilities diverge wildly from the

numerically computed values, especially for the Type II missed detection probability in Table 7.31.

The reason for this is clearly due to the fact that the non-stationary non-Gaussian effects cannot

be accurately modelled, as we found before and discussed in detail for Tables 7.26- 7.29. When

observing the final column, a similar analysis can be made as for the last case, that when we adhere

to the schedule given in Table 7.1, the deviations in simulated probabilities climb where there is a

sufficient count. Also, we are changing the implementation type, so that lends to the changes as

well.

Although the aggregate input disturbance statistics of the first-principles based-model may

match those of the Gaussian-stationary approximation of the model on a macro level, the same

may not be true on a micro level. In fact, the diurnal periodicity exhibited in the first-principles

model-based building temperature time-series data cannot be accurately reproduced by a Gaussian-

stationary approximation of the model. Clearly, the same is true for the 2nd-order model based purely

on statistics. They do an excellent job at approximating the fundamental spectral characteristics

of the aggregation of the data (on a macro scale, such as annual statistics, etc.). However, this

appears not to be a sufficient characterization for the periodic nature of the data, especially during

start up and shut down times. Yet the most interesting fact to notice is that for the most part,

this sub-optimal phenomenon has an advantageous side effect. The missed detection probabilities

decrease, which is to our advantage from a practical standpoint.

In the implementation of any of the optimal alarm systems presented in this section, it

is important to consider that the results shown are open to interpretation. It has been mentioned

several times that using the minimax design criteria may result in an apparently very high false

alarm and missed detection rate. But recall the technical definition of a false alarm and a missed

detection from Chap. 3. If the alarm sounds when the criteria is not met, it may be met in the next

few time steps. Hence, the alarm just sounded “too early.” Similarly, if the alarm does not sound

when the criteria is met, it may also sound in the next few time steps. Hence the alarm was “too
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late.” However, the alarms still indicate that an upcrossing or an event of some type will occur,

just not at a given time. Even though our criteria was meant to catch several events, not just a

single one, as was originally proposed by Svensson [70], timing is still an issue when considering real

implementation of the optimal alarm system.

Figures 7.3 and 7.4 illustrate this phenomenon for both the “Svensson model” and the

“Federspiel model,” respectively. For the “Federspiel model,” the building temperature shown in

Figure 7.4 is simulated using the basic 2nd order statistical model, not the one introduced in Chap.

6 that is based upon 1st principles. It is obvious that the upcrossings shown are predicted by

the alarms, but they are not caught exactly at the time dictated by the number of time steps in

the prediction window. For example, there are two level crossing events in Fig. 7.4. The first

is completely missed throughout the entire prediction window, hence the asterisks indicate missed

detections during this period. The second one is not caught at the very beginning of the prediction

window, but as it slides forward, notice that there are some correct alarms, followed by a few

false alarms. All of the missed detections and false alarms count towards the computation of the

probabilities shown in Fig. 7.2. However, on average the heuristic interpretation would yield a

much better detection rate. The same logic can be applied to Fig. 7.3, for Svensson’s model. In

Svensson’s original study, when he was considering optimal alarms for a single upcrossing event, the

simulated Type I/II error probabilities accurately characterized false alarms and missed detections.

However, with our “multiple” complaint prediction window, the Type I/II error probabilities have

some flexibility in their interpretation regarding the timing of false alarms and missed detections.

Their definitions and the resulting probabilities should therefore not be taken so literally.

7.3 Optimal Control Results

Now that we’ve discussed all that pertains to optimal alarm systems, it is important to

discuss the practical implementation of optimal control, and how it ties to the optimal alarm results.
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Figure 7.3: Realization of Optimal Alarm System for Svensson’s Model
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Figure 7.4: Realization of Optimal Alarm System for Federspiel’s Model

In the case of response to complaints alone, the optimal control results can clearly stand alone without

being tied directly to the optimal alarm results. First we will take a brief look at some basic PI

controller issues as far as the “inner loop” is concerned (recall Fig. 6.1).

7.3.1 Inner Loop Controller Details and Event Asymmetry

The PI controller shown in Figs. 1.1 and 6.1 implement simple antiwindup-saturation logic,

based upon an exceedance of 50 kW of heating power. For this particular model [46, 47], it was found
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that with the incipient disturbances and balance of building thermal inertia, no cooling power is

needed in general. Rather, heating power is always needed to maintain the setpoint throughout the

year. As such, we need to develop a reasonable actuator saturation limit on this power. The power

required is assumed to be practically realized with equipment that will have natural thermodynamic

limits on its output capacity. The only bearing that this will have on the results provided in this

section is that the setpoint will not be maintained during actuator saturation. This means that the

temperature will be lower than the required setpoint, and hence we should expect more cold events

in general than hot events. This is clearly the case for the results presented in the previous section

for optimal alarm as well. The same PI controller was part of the first-principles based model used

to obtain the optimal alarm results in Tables 7.30-7.33 of Sec. 7.2. By observing the statistics in

these tables it is evident that cold events greatly outnumber hot events.

However, this is also the case when using real data, or the simple 2nd-order statistics-based

model for simulation. The reason for the asymmetry in cold events outnumbering hot events in

the case of the 2nd-order statistics-based model is due to the inherent spectral characteristics of

the cold complaint process, which has a much higher rate of change (1.14
oF
hr for hot vs. 4.08

oF
hr

for cold), and a slightly higher variance (5.06oF for hot vs. 6.14oF for cold) . The relative means

are also different (22.74oF for hot vs. 17.84oF for cold), playing a minor role in the asymmetry

of the number of events. However, when using the real or modelled data and operating the alarm

systems continuously, as discussed in Sec. 7.2, the non-stationarity of the processes on the cold side

contribute significantly to this asymmetry as well.

7.3.2 Baseline Setpoint Control Policies

To begin the discussion of optimal control behavior, we first need to review all of the

possible control and alarm events that may occur during testing and simulation. The different types

of hot and cold events are summarized in Table 7.34. In this table, the optimal operating complaint

response shown is triggered by a single upcrossing event, during the “operating complaint period”
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defined in Table 7.1. Recall that an upcrossing in simulation is prompted by the following condition:

{zk−1 < 0, zk > 0}. Similarly, when considering the optimal arrival complaint response, we describe

the corresponding event as two consecutive exceedances at any point during the arrival period, or as

{zk−1 > 0, zk > 0}. The reason for the definition of the arrival event as two consecutive exceedances

is to count only arrival complaints, and not operating complaints. We want building occupants to

arrive in a pre-existing complaint condition. It is also possible to define the arrival complaint region

by using a single exceedance in lieu of two consecutive exceedances, however, doing so will limit the

range of the time in a complaint status upon the arrival of building occupants.

All optimal alarm responses shown in Table 7.34 are triggered by a single binary decision

that needs to be performed. Recall from Sec. 7.2 that we can use the exact alarm condition to trigger

the binary decision. An example is the condition shown as Eqn. 3.2 from Chap. 3, for operating

complaints only. This would require the numerical computation of the corresponding integral only.

The computational burden would not at all hinder the real-time control performance of the system,

because it takes on the order of hundredths of a second to compute.
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Event Type Possible Event
Responses

Formulae Required

Operating Complaint
Event

Baseline Operating
Complaint Response

Eqns. 7.1-7.2

Optimal Operating
Complaint Response

Eqns. 6.26-6.29, 6.30-6.35

Arrival Complaint Event Baseline Arrival
Complaint Response

Eqns. 7.1-7.2

Optimal Arrival
Complaint Response

Eqns. 6.26-6.29, 6.36-6.41

Alarm Event for
Arrival/Operating
Complaint Period

Baseline Arrival/Operating
Alarm Response

Eqns. 7.1-7.2

Optimal Arrival/Operating
Alarm Response

Eqns. 6.26-6.29, 6.50-6.53

Alarm Event for
“Operating Only”
Complaint Period

Baseline “Operating Only”
Alarm Response

Eqns. 7.1-7.2

Optimal “Operating Only”
Alarm Response

Eqns. 6.26-6.29, 6.44-6.49

Table 7.34: List of Complaint and Alarm Events
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All baseline complaint responses shown in Table 7.34 are simulated by assuming an adhoc

strategy of facility operators responding to events. The response is simulated by changing the

magnitude of the thermostat setting by a random amount in the appropriate direction. The random

magnitude of the change is governed by a robust regression analysis performed on actual thermostat

setting changes logged in a commercial building similar to the candidate buildings identified in Sec.

7.1. The method used was based on a reweighted least-squares regression as in Stone [68], and

devised by Federspiel. The adhoc formula governing setpoint changes is shown in Eqns. 7.1-7.2.

The parameters 71.0954 and 0.0148 were obtained via the stated robust regression analysis. The

additional 1.5Z term is meant to characterize the realistic random nature of typical thermostat

setting changes. It is obtained from the standard deviation of the residuals from the reweighted

least squares model with an outlier removed.

gk = 71.0954 + 0.0148rk−1 − 1.5Z (7.1)

rk =





s(−gk) hot event

s(gk) cold event
(7.2)

where Z ∼ N (0, 1)

Recall s(δ) =





1 δ > 0

0 δ ≤ 0

This baseline setpoint control policy will also be used for comparison to the results of

optimal control, later in the section. The common metric for comparison is one that was described

previously, where both complaint and energy costs are considered. However, if we consider the case

in which the response to complaint or alarm events is automated, or “semi-automated,” there is no

need to dispatch a facility technician, and therefore no labor charges are incurred. Therefore the

complaint cost as defined is eliminated via automation, but it may still be of use to quantify this

same metric in a different way to quantify thermal discomfort. It may be assumed that shifting

this cost to quantify discomfort rather than complaint costs is akin to attaching a dollar value to
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discomfort as investigated by Mozer et.al. [52, 53].

Therefore the actual cost metric is as in Eqn. 2.5 where J =
∑L

k=0 RkPkTs + Ck, even

though the cost function penalty is actually the square cost of energy conditioned on the type of

event being responded to, as in Eqn. 6.23, J = T 2
s E[R2

Nh2
N +

∑N−1
k=0 R2

kh2
k|E ]. Pragmatically, our

interest is in the former cost function, even though it is the latter that is used to derive the optimal

control law. Therefore, the results presented are not expected to be theoretically optimal, since we

are using a metric for comparison that has not actually been used to derive the optimal control law.

In fact, they will be sub-optimal, and perhaps they will exceed the costs of the baseline strategy

over a portion of the range of a given modelling parameter.

There are actually two different baseline setpoint policies that we’d like to consider. One

represents no response to any complaint events, where the setpoints remain at nominal statically

optimized thermostat settings. This optimization was described in Sec. 6.1, but it does not consider

energy costs as demonstrated by Federspiel [19, 21, 22]. The second baseline setpoint policy is the

one we’ve described earlier with Eqns. 7.1-7.2 and presented in Table 7.34. A realization of the static

optimization control policy and its counterpart control actuation and price signal are provided in

Fig. 7.5.
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Figure 7.5: Nominal Statically Optimized Setpoint Control Policy

The top graph in Fig. 7.5 shows an actual realization with all processes and events that

occur during the simulation. Although the simulation run time is shown to be 2500 days, only

a very short slice of simulation time is actually displayed, from 26 to 29 days. Therefore, not

all of the events shown on the legend appear within this timeframe. However, some fundamental
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characteristics of the plot can be pointed out. The red and blue lines represent the hot and cold

complaint processes, respectively. The solid black line represents the building temperature process

according to the first-principles based model and corresponding schedule, and the dashed black line

represents real building temperature data from the prototype zone. For the purposes of the study

in this subsection, all complaint events are taken as interactions of the model-based solid black line

building temperature with the complaint level processes.

Although none appear in the graph for the timeframe shown, any red or blue squares (¤)

represent hot or cold or operating complaints, respectively. Also, any red or blue diamonds (♦)

represent hot or cold or arrival complaints, respectively. The events that do appear in this short

time frame are hot and cold false arrival/operating alarms, represented by the red and blue cross (×)

indicators. No other types of alarm indicators (for missed detections, or hot/cold operating alarms)

appear in the graph. Another important association of the false alarms shown in the graph are the

predictions appearing as dotted black lines that correspond to the alarms shown. Finally, the green

flat lines represent the statically optimized arrival complaint reference thermostat setting for the

arrival/operating alarm period (4:30 am to 7:30 am). The magenta flat lines represent the nominal

thermostat setting for the operating alarm period (7:30 am - 5:00 pm, also statically optimized).

On the lower portion of Fig. 7.5, we can see the graphs for the control power as a function

of time, as well as the price of electricity as it varies with the time of day and season. Notice that

the actuator saturates at 50 kW several times in the simulation period shown, where the antiwindup

logic kicks in. The seasonal variation of the electricity price can also be observed in the plot, and

occurs at around day 68. The plot also shows the amount of money spent on energy and complaints

for the entire duration of the 2500 day simulation period, even though just under 100 days are shown.

A similar realization of the baseline setpoint control policy is provided in Fig. 7.6.

The main feature of the graph shown in Fig. 7.6 illustrates a hot operating complaint, at

day 109, which is responded to by using the baseline setpoint control policy. Notice the dip in the

building temperature around the middle of the operating period during the day, as the thermostat
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Figure 7.6: Baseline Setpoint Control Policy

setting is changed from 72.27 oF to 69.45 oF . There are also a few subsequent minor adjustments

made due to a few false cold arrival alarms in the next 2 days. We forgo the repetitive displays of the

counterpart control actuation and price signal graphs, because qualitatively they are very similar to

those shown in Fig. 7.5. The most important information gleaned from these two omitted graphs

are the metrics quantifying the energy and complaint (discomfort) costs. They will be summarized

along with the static results in Table 7.35 shortly.

Fig. 7.5 illustrates the costs for energy, complaints (discomfort) and the sum of both, which

were recorded during a 2500 day simulation (6.85 years). The energy computation was performed

according the rate scenario used by Federspiel in his study [21, 22], the E-19 electrical energy tariff

offered by PG&E. Also, the complaint cost, Ck, is proportional to the number of hours charged. Let

Ck = HLNk, where H is the average number of hours charged in response to a thermal sensation

complaint, L is the total hourly labor rate for technicians who handle complaints, and Nk is a
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discrete binary variable characterizing the “complaint status” at time k, with a value of 1 for a

complaint and 0 for no complaint. According to studies by Federspiel [20, 21], L = 1.85 hours, and

the total hourly wage for an HVAC mechanic in Sacramento, California, is L = $30.78/hour.

The results of the simulations are summarized in Table 7.35. Notice that the statically

optimized policy (not responding to any complaints) has a higher cost for both energy and complaints

(discomfort) than when using the baseline optimal control policy, as expected. These results will

also be compared to the results for automated optimal control and alarm implementation using the

same simulation run-time in the next subsection.

Setpoint
Policy

Energy
Cost

Complaint
(Discomfort)

Cost

Total Cost

Nominal
Statically
Optimized
Setpoint
Control
Policy

$71,727,319.85 $740.259 $71,728,060.11

Baseline
Setpoint
Control
Policy

$69,970,848.12 $455.54 $69,971,303.66

Table 7.35: Table of Baseline and Static Setpoint Policy Metrics

We are interested in an assessment of the sub-optimality of using Eqn. 2.5 where J =

∑L
k=0 RkPkTs + Ck as a metric, even though the cost function penalty is actually the square cost

of energy conditioned on the type of event being responded to, as in Eqn. 6.23, J = T 2
s E[R2

Nh2
N +

∑N−1
k=0 R2

kh2
k|E ]. It will be determined if the costs associated with the baseline and static setpoint

control strategies exceed that of the metric being measured in simulation, over a portion of the
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range, or the entire range of a given modelling parameter.

7.3.3 Optimal Control Policy

The modelling parameter that has been alluded to earlier as an instrument to examine

the optimal control policy and compare to the other baseline control strategies is naturally the

border probability, Pb. Changing the border probability will result in greatly different responses

to alarms. The selection of an optimal Pb value is a design criteria that affects the sensitivity of

building operation with respect to false alarms and missed detections. However, it can also be

looked at parametrically in terms of the subsequent automated thermostat setting control response.

In fact, it is instructive to consider the “average responses,” as shown in Figs. 6.3 and 6.4, where

the optimal control, uk, is plotted over the desired finite horizon, representing the deviation from

the nominal thermostat setting, r̄. Therefore, in Figs. 7.7 and 7.8, the average responses to alarms

for several different values of Pb are shown. The conditions for which the control solutions were

computed are exactly that same as those used for Figs. 6.3 and 6.4. Responses to complaints cannot

be parameterized by Pb, because doing so is unique to alarms, and we are trying to determine the

utility of the alarm-based control, as opposed to simple complaint response.

In Figs. 7.7 and 7.8, there are 6 different values for Pb shown in each graph. In Fig.

7.7, for hot alarms, all 6 different values of Pb can clearly be distinguished. The corresponding Pb

values come from the following set: {0.0001, 0.0002, 0.001, 0.002, 0.00536, 0.01}. For the alarm-based

response to operating complaints on the top of Fig. 7.7, there are some extreme responses. This

was also evident in Chap. 6. Here we see that as Pb increases, so does the maximum magnitude of

the response. This illustrates the sensitivity of the control algorithm to the values of Pb, because of

the small range of values that Pb is plotted for.

If we select a very small value for Pb = 0.0001, i.e. the smallest one from the list shown,

then the maximum magnitude of the control response over the duration of the finite horizon is

≈ 27oF . This value is reasonable, because it will decrease the building temperature according to
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Figure 7.7: Optimal Alarm-Based Control Policy for Hot Alarms (Different Pb values)

the magnitude of the response required by alarm system’s “tuning.” However, as the alarm system’s

tuning changes, and Pb increases a few orders of magnitude, the alarm system response is to decrease

the thermostat setting more and more. Consequently, the maximum magnitude of the thermostat

setting response peaks at 143oF . This, of course, seems to be an unreasonable change from a

thermal comfort standpoint. However, consider the fact that the optimal control cost function is

truly based on penalizing energy, as well as conditioned on the alarm statistics. As such, decreasing

the thermostat setting significantly will satisfy the dual objective of reducing the temperature in

response to a potential hot complaint, and reducing the energy consumed in doing so as well.

Furthermore, because of the natural slow dynamics of the closed-loop system, the building

will take some time to respond to the change in a thermostat setting. These dynamics are taken
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Figure 7.8: Optimal Alarm-Based Control Policy for Cold Alarms (Different Pb values)

into account in the derivation and execution of the control law. As such, the maximum magnitude

of the thermostat setting does not provide a true quantitative measure of the change in building

temperature that will take place. In fact, the change in the building temperature over the plotted

horizon will be mitigated by the fact that the window is finite, and the magnitude of the response

decreases considerably over this horizon. However, we must still be very careful about which method

we use to design the optimal alarm system. Obviously, the control response is very sensitive to the

Pb value selected according to a design criterion that may not accurately represent the true costs

that need to be penalized. Recall that a thorough discussion of assigning weights in formation of an

optimal alarm system design cost function was discussed in Chap. 5. This discussion may provide

a viable alternative to the minimax design criterion used for the examples in this chapter.
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Another factor influencing the alarm-based control system is the fact that the multi-

dimensional method was used to approximate the exact alarm region, as discussed in Chap. 6.

It may also be the case that the method of implementation of the multi-dimensional approximation

with the control algorithm is sub-optimal. Recall that as currently implemented, the alarm region is

split up into pieces, instead of treated as a whole. Although the multi-dimensional approximation of

the exact alarm region spans all of the time slices in the horizon, it may still be feasible to attempt to

implement the control law presented in Sec. 6.2.4, using the entire approximation on a step-by-step

basis.

On the bottom of Fig. 7.7, the alarm-based response that considers both arrival and

operating complaints is illustrated. Evidently, much of the same behavior exist as for the case above

it. One of the main differences is in the maximum magnitudes of the control responses to these types

of alarms. This difference is clearly influenced by the implementation of the approximated alarm

region, which is distinct from the previous one. Also, the qualitative nature of the responses are

different in that if Pb is small enough, there is no immediate control response, and larger magnitudes

occur later in the control horizon. This may also be influenced by the nature of the different region

which accounts for arrivals, as well as the fact that there is a d = 1 hour look-ahead prediction

window, in which the rate of electricity changes according to Fig. 6.5.

In Fig. 7.8, for cold alarms, all 6 different values of Pb cannot clearly be distinguished.

The corresponding Pb values come from the following set: {0.001, 0.002, 0.01, 0.02, 0.027867, 0.1}.

On the top graph, when responding to cold operating alarms only, as Pb increases, the qualitative

nature of the response changes significantly. For the smallest two values of Pb, shown as dotted

lines, the response gradually decreases until it dies off to 0 at the end of the control horizon. For

the 4 greatest values of Pb, shown as solid lines, the opposite happens, where the response is 0

until the very end of the control horizon, where it increases proportionally with the value of Pb. A

similar qualitative description characterizes the behavior of the alarm response for both arrival and

operating complaints on the bottom graph. However, in this case, the smallest three values of Pb
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are shown as solid lines, and the response gradually decreases until it dies off to 0 at the end of the

control horizon. Interestingly, there is no response at all the for alarms corresponding to the next

larger 2 values of Pb=0.02,0.027867. Finally, for the largest value of Pb, shown as dotted line, the

response is 0 until the very end of the control horizon, where it increases. The magnitudes of all of

the responses to the cold alarms shown in Fig. 7.8 are reasonable, with the possible exception of the

higher Pb values for the “operating only” alarm system. Here, the same explanation as was used to

justify the extreme results for Fig. 7.7 applies.

For the results in Figs. 7.7 and 7.8, there are cases in which there is no immediate response

to the alarm or in some cases no response at all. This can be attributed to the fact that the

control was posed as a constrained input problem, invoking the application of Pontryagin’s Minimum

Principle to arrive at a solution. The hard constraints on the control problem disallow any part of the

control trajectory into the inadmissible region. As such, the “bulk” of the response is often “saved

for later,” at times when, for example, the price of electricity is more conducive to an admissible

control action that favors reduced energy usage. The same is true of the response to complaints as

opposed to alarm, as shown in the top 2 graphs of Fig. 6.3 in Chap. 6.

Now that the importance of the sensitivity of the control response to alarm design has

been established, it is of interest to compare the optimal control policy to the other baseline control

strategies using the border probability, Pb. Alarm system response was executed for the baseline

strategies as well. We can compare the relative magnitude of the results for the baseline control

strategies shown in Table 7.35 by superimposing them on the same plot. Recall that we are interested

in an assessment of the sub-optimality of Eqn. 2.5 where J =
∑L

k=0 RkPkTs + Ck. We will now

investigate the costs of the baseline and static setpoint control strategies. It will be determined if they

exceed the same metric of the optimal control strategy being measured in simulation over a portion

of the range, or the entire range of Pb values under consideration. This is an important metric even

though we are automating the strategy (i.e. Ck is typically used for unautomated operation), and

it is not the actual cost function used to derived the control law. The complaint cost portion of it
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is important from an economic standpoint, and good a indicator of thermal discomfort nonetheless.

An unintended additional feature of the comparison is the quantification of the improved optimal

response to complaints over the baseline response, in addition to alarms.

Figs. 7.9-7.11 illustrate a decomposition of the metric described above, with the baseline

and static data from Table 7.35 superimposed for comparison. The Pb values shown represents the

average values for all alarm systems in operation for that simulation. This includes all 4 alarm

systems: hot and cold alarm systems and both operating only and arrival/operating alarm systems.

The simulation run time of 2500 days (6.85 years) was used for all data points shown in Figs.

7.9-7.11.
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Figure 7.9: Energy Costs for Different Pb values

Notice that the optimal average value of Pb corresponding to the minimax design criteria

used for optimal alarm design (0.01845) yields an optimal energy cost of $71.67M and an optimal

complaint (discomfort) cost of $170.829. Both of these points are shown with asterisks in Figs.

7.9 and 7.10, respectively. This appears to be close to the best tradeoff between both energy and

complaint (discomfort) costs, as well as the best tradeoff between false alarms and missed detections.

Comparing sub-optimal energy costs to the baseline and static energy costs shown in Fig. 7.9, we

see that the general trend is for the static cost to act as an upper bound on the optimal energy costs.



236

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

P
b

Complaint (Discomfort) Costs vs. P
b

T
ho

us
an

ds
 o

f 
$

Static
Baseline
Optimal

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1

2

3

4

5

P
b

Complaint (Discomfort) Costs vs. P
b

T
ho

us
an

ds
 o

f 
$

Static
Baseline
Optimal

Figure 7.10: Complaint (Discomfort) Costs for Different Pb values

However, the baseline cost is exceeded by the sub-optimal cost just to the left of the minimax-based

optimal Pb value. Therefore, we now have evidence of the sub-optimality of using a different cost

function for comparison than was actually used to derive the control law. The same phenomenon

holds true in general for the total cost, as shown in Fig. 7.11. Therefore, we can make a reasonable

conclusion pertaining to the sub-optimality we intended to investigate. The resulting suboptimal

energy costs will always be lower than the static energy costs for all values of Pb. If we choose

Pb < 0.0165, where the suboptimal curve intersects the baseline value, the resulting sub-optimal

energy costs will also be lower than the baseline energy costs.
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Figure 7.11: Total Costs for Different Pb values

Now if we compare sub-optimal complaint or discomfort costs to the corresponding base-

line and static costs shown in Fig. 7.10, we see the opposite trend. Here, the sub-optimal com-

plaint/discomfort cost starts off very high for low values of Pb, but as it is increased, the sub-optimal

cost decreases rapidly below the respective baseline and static costs. Two graphs are shown to indi-

cate the qualitative nature of this more clearly. The top graph shows all plotted data points, and the

bottom graph zooms in on the area of interest. Evidence of sub-optimality is still present due to the

exceedance of the static and baseline costs for small values of Pb. If we choose Pb > 0.0166, where the

suboptimal curve intersects the static value, the resulting sub-optimal complaint/discomfort costs

will be lower than the static complaint/discomfort costs. Similarly, if we choose Pb > 0.0175, where

the suboptimal curve intersects the baseline value, the resulting sub-optimal complaint/discomfort

costs will be lower than the baseline complaint/discomfort costs.

In lieu of using the total cost metric J =
∑L

k=0 RkPkTs + Ck, we may try to apply a

multi-objective criteria for optimality, such that both sub-optimal energy costs (J =
∑L

k=0 RkPkTs)

and complaint costs (J =
∑L

k=0 Ck) fall below the corresponding baseline costs. However, the

intersection of the two resulting solution regions, Pb < 0.0165 and Pb > 0.0175, is empty. This may

not always necessarily be the case due to inherent statistical error involved in the results, since they
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are all based on simulation. Certainly if we choose Pb > 0.0175, the sub-optimal costs are always

lower than both of the corresponding static costs. But we are more interested in obtaining a sub-

optimal control that performs better than the baseline strategy, because that is our benchmark for

how facility operators currently respond to complaints in buildings. When considering the original

metric quantifying total cost from Fig. 7.11, recall that the same phenomenon for the energy costs

alone hold true. That is, if we choose Pb < 0.0165, the resulting total cost will always be lower

than the total baseline or static cost. However, there is no unique solution in this case, which is

less valuable to designers of the alarm-based control system. It is possible to consider alternative

methods for finding a solution to the sub-optimal control, such that an optimal Pb can be found

to satisfy a reasonable tradeoff between energy and comfort considerations that beats the baseline

costs.

The best tradeoff between both energy and complaint (discomfort) costs may be a variant

of the minimax design criterion. This is true only if we consider the costs to be weighted, as in Martin

et. al. [48], rather than on an equal footing with each other. Doing the latter will default to the

non-unique complaint/discomfort cost solution of Pb > 0.0175. The choice of these weights can be

left purely to the discretion of the designer, but in order to arrive at a unique solution that provides

a total weighted cost that is less than the baseline costs, the weights must be chosen carefully. For

example, if we weight the complaint cost at least 3 orders of magnitude greater (i.e 1000 times

greater), and keep the weight on the energy cost at unity, we can arrive at a unique solution of a

very small value for Pb. The energy cost should never be weighted because we know these costs are

inflexible, and we always want to compare it to the benchmark baseline cost having the same order

of magnitude. However, weighting the complaint costs is perfectly acceptable considering the fact

that the complaint cost has an alternative interpretation as a discomfort cost, which is more loosely

defined.

As such, if a multi-objective criteria for optimality will not yield a non-empty solution, or

using the non-unique total cost metric solution is undesirable to the designer, it is practical to use



239

this weighted variant of the minimax formulation. Using any of these alternatives will result in an

economical, energy efficient optimal alarm-based control system whose implementation falls below

baseline costs. It will also provide the most correct, robust and adequate preventative and corrective

response to thermal discomfort events. In fact, it is possible to choose a weight that will result in the

same solution corresponding to the minimax design criteria used for optimal alarm design, although

it will not necessarily result in any economical advantage over the baseline costs. However, it has

been the method for presenting all of the results in this chapter thus far. Therefore, a realization of

the corresponding optimal control thermostat setting policy and its counterpart control actuation

and price signals are provided in Fig. 7.12.
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Notice that in Fig. 7.12, although 2500 days in total were simulated, only two full days are

shown in the top graph. The legend and major features are very similar to the explanations provided

for Figs. 7.5 and 7.6. There are three basic events that take place during the time period shown.

For all other periods, the thermostat settings are scheduled according to the statically optimized

setpoints. All of the events shown are false alarms. The first alarm event occurs during operating

hours, and the response is evident in the subsequent thermostat setting change. Only the last

setpoint close to 40oF in the control horizon appears on the graph, because the remaining optimal

setpoints fall far below the lower limit of the graph. The lowest optimal point is close to −50oF .

However, notice the response to the thermostat setting causes the building temperature excursion

to dip down only to 68oF . This is an example of the phenomenon mentioned earlier, where the

building will take some time to respond to the change in a thermostat setting because of the natural

slow dynamics of the closed-loop system. Also, the change in the building temperature over the

plotted horizon is mitigated by the fact that the window is finite.

For the remaining two false alarm events that occur the next day, a similar excursion in

building temperature results, during the arrival period. Here, a cold false alarm is immediately

followed by a hot false alarm, due to the low temperature at the beginning of the arrival period,

followed by the start-up of the HVAC system that cause the temperature to increase very rapidly.

The subsequent control response is for the thermostat setting to change according to the perceived

thermal comfort demands, and the building temperature to follow. Notice the control power used

during these two days when making these responses, shown in the second graph below. Energy is

saved by responding to the events in the manner they are, even though they are false alarms and no

actual complaint events occur. The perception of thermal discomfort will not always be perfectly

predicted due to the nature of the alarm systems’ inherently imperfect false alarm/missed detection

tradeoffs. Yet at times when the price of electricity is at a premium, according to the last graph in

Fig. 7.12, the energy savings during this time may be worth the temporary discomfort of building

occupants. In the long run, the energy savings reaped by these false alarms will balance against



242

times when the alarms will actually be correct, and both thermal comfort and energy objectives are

simultaneously satisfied.

7.3.4 “Alarm-Based Control” System Utility

Recall the discussion from Sec. 7.2 on the utility of the alarm system when designed for an

unautomated response. If we consider the case in which the response is automated, the utility of the

optimal alarm system changes, and energy costs have implications on optimal control. The reason

that the utility of the alarm system must be tied to energy considerations is because complaint costs,

Ck, as defined with Eqn. 2.5 where J =
∑L

k=0 RkPkTs + Ck, have been eliminated via automation.

That is why it was necessary for us to shift this cost to quantify discomfort rather than complaints.

As such, we now investigate the energy cost implications of using an optimal alarm system.

In general, for response to any type of complaints, whether the result of missed detections

or not, and response to any type of alarms, comfort costs energy. Any response to an event, whether

anticipated or caught after the fact without prior warning will be to change the setpoint. This clearly

incurs some sort of energy cost, whether positive or negative. However, if we consider the case of

correct alarms/detections, we may incur additional energy costs that we wouldn’t otherwise if we

hadn’t pre-empted the complaint. In other words, if an alarm correctly predicts a complaint, there

are two responses, one in response to the alarm, and a subsequent one in response to the actual

predicted complaint. Therefore, energy costs will be incurred for both responses.

If we consider the details for the case of correct alarms/detections, the magnitude of energy

used in response to the alarm and complaint events depend on several factors. The first factor is

whether the event is a hot or a cold event, the second factor is whether the zone requires heating

or cooling power (i.e. a seasonal basis), and the final factor has to do with the overall statistics of

hot events vs. cold events. If the response is to a hot event during “heating season,” then negative

setpoint changes will reduce the heating power used, and it’s favorable in terms of both thermal

comfort and energy objectives. The same holds true (reduction in cooling power) if the response is
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to a cold event during “cooling season.” However, if hot events take place during cooling season, or

cold events occur during heating season, then additional costs are incurred due to energy usage in

response to building thermal comfort. Changing the setpoint in response to events in such a manner

demands more power usage.

On an aggregate (i.e. annual) level, if on average the number of hot events is the same as

the number of cold events, regardless if it is heating or cooling season, the reductions and increases in

energy will balance each other out. However, if the statistics of hot and cold events are asymmetric,

then on a seasonal basis, the energy ramifications will either be favorable or unfavorable. For

example, during heating season, if there are more hot than cold events, then annual energy usage

should be favorable. However, if there are more cold than hot events, annual energy usage is

unfavorable. Likewise, during cooling season, if there are more hot than cold events, the annual

energy usage is unfavorable, otherwise it is favorable. Therefore we see that asymmetry is favorable

with respect to energy usage when there are more events of a type that are atypical of the season.

Symmetry in general is neither favorable nor unfavorable with respect to aggregate energy usage.

If we consider the simulation results presented in this and the previous section, recall

that for this particular model [46, 47], heating power is always needed to maintain the setpoint

throughout the year. Furthermore, we’ve found that in general, there is an asymmetry in cold

events outnumbering hot events. As a result, overall there is an unfavorable conclusion with regard

to energy. Even though Fig. 7.12 demonstrates more hot than cold events, and energy is saved by

responding to the events in the manner they are, it will still be the case that cold events outnumber

hot events on average.

However, we have only considered the energy cost part of the discussion thus far. If we don’t

consider quantifying discomfort, then on average correct alarms will always incur additional charges.

As stated several times previously, because complaint costs are assumed to be eliminated with

automation of the response to system events, we must consider quantifying the cost of discomfort

somehow, and doing so will counteract the resulting unfavorable energy implications for correct
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alarms. If we consider false alarms and missed detections, we see that they will also always cost

extra due to the stated energy considerations. Unfortunately, there is no counteracting thermal

comfort advantage in the case of false alarms, because no actual complaints occur. In fact, there is

most likely a thermal comfort disadvantage that results from response to false alarms when there is

no pending complaint condition. The response is not expected, and may tend to push the thermal

discomfort envelope in the opposite direction than was originally desired. Missed detections, however,

will certainly cost extra overall with respect to energy, but the counterbalance of directly responding

to thermal sensation complaints presents a clear comfort benefit.

The conclusions thus far concerning energy have been based on aggregate statistics, and

as evidenced in Fig. 7.12, event responses will not always result in unfavorable energy excursions.

Remember also that the conclusions stated here are only valid for a model of the prototype building

whose accuracy in quantifying and implementing actual energy usage is dubious at best. We would

expect that in a realistic scenario, there is actually both a cooling and a heating season, and the hot

and cold statistics would be unique to that particular zone. Therefore, the conclusions to be made

in a realistic scenario may differ greatly from the results presented here for our prototype.

It is also important to remember that there is another avenue of control for determining

the energy outcome, whether it is a simulated or a realistic scenario. The optimal alarm design

procedure can be tailored to account for energy considerations. The optimal value of Pb can be

determined by creating a energy-based cost function which uses the Type I/II error probabilities.

For example, in the results for the model of the prototype, the energy implications were unfavorable

overall. As such, we can assign weighting to the Type I/II error and alarm probabilities that are a

function of the amount of energy required to heat or cool that zone. Therefore the size and thermal

properties of the zone may be important in establishing these weights as well. The resulting solution

to the design problem would be to find the optimal Pb that mitigates unfavorable energy conditions.

We’ve seen a very similar presentation of how Pb can be chosen to favor reduced energy usage earlier

in the section, from the discussion of Fig. 7.9.
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Let us now hypothetically assume that there is no penalty on discomfort, because com-

plaints can all be accurately predicted and prevented by the alarm system. In this case, the alarm

system must be designed for a very low missed detection rate, or a very low Pb value. In a sense

we are assuming that the alarm system is perfect and all thermal sensation complaints can be per-

fectly predicted and prevented. Therefore, any complaints that occur must be due to some other

reason than discomfort (i.e. a fault in the system, problem with an HVAC component, etc.). As

a result, any actual missed detections that occur signal that something else is wrong, and on this

very extreme side of the spectrum, our optimal alarm-based control system has now become a fault

detection system.

However, there is no perfect optimal alarm system, and all complaints due to discomfort can

never be 100% perfectly predicted are prevented by the alarm-based control system. The main reason

for this, of course, is that there will always be a trade-off between false alarms and missed detections

made during the alarm design stage. This design can take place with numerous considerations in

place, as we’ve seen. Considering the current extreme scenario, where missed detections are highly

penalized, many false alarms will be elicited, and result in subsequent automated responses. As

such, any actual complaint is most likely due to a fault in the mechanical system, and will require

the dispatch of a facility technician. Therefore, no money is saved when choosing a very low value

of Pb, because of the dispatch required, even though doing so will result in reduced energy costs

overall. The costs and benefits involved with operating the system in a fault detection role for very

low Pb values are as follows:

1. High labor dollars due to dispatched facility technicians investigating possible faults.

2. Low energy costs.

3. No missed detections.

On the other end of the spectrum, if false alarms are highly penalized, the alarm system

completely loses its utility as a fault detection system, and is more of an optimal alarm-based control
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system. The costs involved with switching to an optimal alarm-based control system role for higher

values of Pb are as follows:

1. No labor dollars for any reason due to automated responses to all system issues.

2. Higher overall energy costs due to the increased Pb value, and a greater discomfort prevention

role.

3. Fewer false alarms.

There is an entire spectrum that spans the different roles that can be played by the system

for automated use. Therefore, its operation will save money and benefit building occupants in

different ways for different objectives that need to be achieved according to the desires of the user.

We see that on one end, the system is a fault detection system for low values of Pb, and on the

other end, for higher values of Pb, it is an optimal alarm-based control system. As such, Pb acts as a

tuning parameter that the designer must use to control the objectives that are most important for

the operation of the building under their charge.
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Chapter 8

Conclusions and Future Research

8.1 Optimal Alarm

To conclude the results on the optimal alarm system for unautomated operation, we revisit

the following main points of Chap 7:

• There is no inherent utility in the optimal alarm system, under the following conditions:

1. The response to complaint or alarm events is unautomated.

2. Complaint cost is quantified by the labor dollars required to dispatch a facility technician

in response to such an event.

3. A response is mandatory and takes place without regard to energy implications.

• In this case, false alarms must be minimized in order to prevent the exacerbation of the

inherent negative utility of the optimal alarm system, by choosing an optimal Pb to maximize

E[C|A]. However, the alarm will rarely sound by using this criterion, so using the E[C|A]

design criterion does not prove to be useful.

• To allow for practical use, but yet for response to complaint or alarm events to be unautomated,

the last two conditions stated above must be relaxed.
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1. Namely, energy implications must be considered, therefore missed detections will be bal-

anced more evenly with false alarms in the selection of Pb by using the minimax design

criteria.

2. Furthermore, the utility of the alarm system will have to be quantified differently. It

will necessitate a dependence on a dollar value that can be attached to discomfort (as in

Mozer et.al. [52, 53]) without requiring a tie to the complaint cost, or response to the

actual event by dispatch of a facility technician.

• Monetary quantification of the less tangible thermal discomfort metric and its integration with

optimal alarm systems needs further study, even though the complaint cost quantification was

more preferable due to its more tangible nature. However, the lack of utility of the standalone

optimal alarm system when using complaint costs to measure it necessitates this reformulation.

• Sub-optimality of the results due to assumptions of Gaussianity and stationarity has an ad-

vantageous side effect. The missed detection probabilities decrease, which is to our advantage

from a practical standpoint.

• Due to technicalities, Type I/II error probabilities have some flexibility in their interpretation

regarding the timing of false alarms and missed detections. Their definitions and the resulting

probabilities should on average be determined heuristically. This interpretation would yield a

much more realistic detection rate.

If we consider the relaxed conditions stated in the list above to be implemented, and for the

alarm system to have a positive utility for unautomated responses, then the optimal alarm design

will be based on the model of empirically obtained 2nd order statistics. As such, we should consider

a similar presentation of the realistic results in Chap. 7, but of a qualitative nature. There are two

different cases which need to be assessed, which are based upon the source of the empirical data

that are used to compute the 2nd order statistics. The first case is the one that was used as the basis

of aggregated raw statistical data in Chap. 7. The second case is a truncation of the raw building
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temperature time series dataset. The non-stationary night and weekend periods can be artificially

extracted, along the same lines as the procedure used in Federspiel’s re-calibration study [21, 22].

The advantage to doing this is that the temperature is regulated by a controller during the normal

occupied periods. Therefore, control system error is the main contributor to building temperature

variance during these periods, when the temperature is more “stationary.” Different optimal Pb

values will result from using the different methods of computing these statistics, and hence result in

different behavior of the optimal alarm systems.

If we consider the realistic schedule according to Table 7.1, the optimal alarm system based

on the “truncated” dataset is more appropriate for the “stationary periods” when the operating

alarm systems are on-line, because that is the time period from which the data was extracted. The

raw statistics used to design the alarm systems in Chap. 7 can also be used during the “occupied”

stationary periods, but at an observed suboptimal disadvantage, because the aggregate statistics used

for design were different than those during that period. However, using the statistics of the original

dataset during the “non-stationary” period on HVAC start up, when the “arrival and operating”

alarm systems are on-line will not result in as much of a suboptimal disadvantage. The reason for

this is that the building temperature statistics during this “pre-occupied” period more accurately

reflect the range of the modelled data.

Therefore, to summarize the main conclusions, let’s first assume that the alarm systems

have a positive utility for unautomated responses that consider both energy and discomfort rather

than only complaint costs. Given this, design of the alarms systems corresponding to different time

periods should be based on empirical data from the same time period. Specifically, for both the arrival

and operating complaint period, optimal alarm design should be based on the raw empirical dataset

used to design the alarm systems in Chap. 7. However, for the “operating only” complaint period,

the truncated dataset should be used since it represents the counterpart “occupied” stationary

period.
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Future research areas pertaining to the use of automated or unautomated optimal alarm

systems in general include several mentioned or alluded to thus far. They are summarized and

augmented in the following list:

1. An empirical study needs to be conducted for this application that illustrates the clear supe-

riority of using optimal alarm systems over the “simple” and “predictive” methods described

in the introduction to Chap. 3. Svensson illustrates the superiority of optimal alarm systems

to “predictive” alarm systems for single upcrossing events of a general nature [69, 70].

2. The economic value of discomfort (as in Mozer et.al. [52, 53]) needs further study and inte-

gration with optimal alarm systems, without requiring a tie to the complaint cost.

3. The sub-optimality involved in making stationary and Gaussian assumptions needs further

investigation. This might include a possible study of non-stationary and non-Gaussian distur-

bances to develop more accurate predictions for the alarm system. Hence, instead of relying on

fundamental spectral characteristics, true periodicity and trends in the data can be replicated

and predicted.

4. An adaptive, real-time on-line implementation similar to the one used by Antunes et.al. [2]

needs to be developed for optimal alarm systems as presented in this thesis. It should have

the functionality of learning parameters during system execution. Another technique that

might be considered is to use the E-M (Expectation-Maximization) algorithm, and exponential

weighting for on-line system identification, similar to methods used by Weinstein et. al. [75].

The EM algorithm would need to appeal to mixed graphical modelling, where both continuous

and discrete nodes would need to be used, as in Cowell et. al. [13] and Lerner et. al [41].

Because complaints can be modelled as binary discrete events, and there are other continuous

processes involved, the hybrid nature of the problem reveals an additional layer of complexity.

5. Generalization of the theory in a mathematically rigorous fashion. The appeal of optimal

alarm systems does not end with this application, and as such should be studied in depth.



251

Some examples are generalized by “Svensson’s model,” and all types of catastrophes that it

might represent (environmental & economic systems such as seismic/earthquake applications,

ranfall/runoff issues, & stock market crashes). Also, an example provided in Chap. 2 for

this particular application was mentioned. Specifically, the fundamental idea of alarm systems

can easily be extended to fault detection for specific HVAC system components and relevant

monitored processes as proposed by Seem et. al. [64]. This also has obvious appeal when

considering alarm-based control, using Pb as a tuning parameter. Recall that alarm-based

control systems have a nice interpretation as fault detection systems for lower values of Pb,

as discussed in Sec. 7.3. This idea may even have applicability for lighting satisfaction and

balancing it with energy minimization. However, even more interestingly, the idea of using

optimal alarm systems for fault detection can be studied in a more general context.

8.2 Optimal Control

Some of the chief disadvantages of implementing an optimal “alarm-based” control system

to develop a thermostat setting policy are listed below.

• Sub-optimal results due to an approximated alarm region.

• Sensitivity of the alarm-based control response to the optimal value of Pb selected.

• Temporary discomfort to save energy during high electricity price periods, or for false alarms.

• Empirical data is not sufficient to implement alarm-based control. A model of the building

temperature process which quantifies energy must be used. This model must be very accurate

to allow for truly optimal predictions, alarms, and subsequent control actions to be based on

reality.

However, all of the problems listed above have already been addressed with appropriate

anecdotes or alternatives. Modelling considerations can be addressed with “future research area”
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items #3 and #4 from the previous section. Primarily, the resolutions are based upon the design

flexibility of the system, or alternate approximation methods. Recall from Sec. 7.2 that the design

criteria, i.e. selecting the optimal Pb value, has several simultaneous interpretations. Tuning of the

optimal alarm-based control system can proceed with several objectives in mind. Energy, main-

tenance and discomfort costs as well as sensitivity of the alarm system are all affected by tuning

and selection of Pb. The advantages of being able to perform such analyses are unbounded, and

clearly suitable candidates for further study. This is true not only for the present application, but

for any applications where the utility of implementing new or using existing alarm systems and their

integration with existing control systems has not been investigated.

For this particular building controls application, we now know that the management and

automation of commercial building HVAC systems can benefit immensely from the insightful use of

all available information sources. We’ve seen how modern HVAC systems using direct digital control

provides useful performance data, and can interact synergistically with complaint statistics cultivated

from modern maintenance management databases. The use of the latter to achieve useful practical

objectives that are important to facility managers was virtually an untapped resource until recently.

Application of the theory that drives some the of the newer techniques should present no barrier

to the computational efficiency and practical usefulness of the resulting techniques. Therefore, the

desired outcome, to make these new techniques more accessible to users of existing building control

technology, and for facility managers to benefit from the results presented, can be achieved.
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